首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome-wide linkage analysis using microsatellite markers has been successful in the identification of numerous Mendelian and complex disease loci. The recent availability of high-density single-nucleotide polymorphism (SNP) maps provides a potentially more powerful option. Using the simulated and Collaborative Study on the Genetics of Alcoholism (COGA) datasets from the Genetics Analysis Workshop 14 (GAW14), we examined how altering the density of SNP marker sets impacted the overall information content, the power to detect trait loci, and the number of false positive results. For the simulated data we used SNP maps with density of 0.3 cM, 1 cM, 2 cM, and 3 cM. For the COGA data we combined the marker sets from Illumina and Affymetrix to create a map with average density of 0.25 cM and then, using a sub-sample of these markers, created maps with density of 0.3 cM, 0.6 cM, 1 cM, 2 cM, and 3 cM. For each marker set, multipoint linkage analysis using MERLIN was performed for both dominant and recessive traits derived from marker loci. Our results showed that information content increased with increased map density. For the homogeneous, completely penetrant traits we created, there was only a modest difference in ability to detect trait loci. Additionally, as map density increased there was only a slight increase in the number of false positive results when there was linkage disequilibrium (LD) between markers. The presence of LD between markers may have led to an increased number of false positive regions but no clear relationship between regions of high LD and locations of false positive linkage signals was observed.  相似文献   

2.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

3.
Initial genome-wide scan data provided suggestive evidence for linkage of the asthma phenotype in African-American (AA), but not Caucasian, families to chromosome 11q markers (peak at D11S1985; LOD=2). To refine this region, mapping analysis of 91 AA families (51 multiplex families and 40 asthmatic case-parent trios) was performed with an additional 17 markers flanking the initial peak linkage marker. Multipoint analyses of the 51 multiplex families yielded significant evidence of linkage with a peak non-parametric linkage score of 4.38 at marker D11S1337 (map position 68.6 cM). Furthermore, family-based association and transmission disequilibrium tests conducted on all 91 families showed significant evidence of linkage in the presence of disequilibrium for several individual markers in this region. A putative susceptibility locus was estimated to be at map position 70.8 cM with a confidence interval spanning the linkage peak. Evidence from both linkage and association analyses suggest that this region of chromosome 11 contains one or more susceptibility genes for asthma in these AA families.  相似文献   

4.
Both theoretical and applied studies have proven that the utility of single nucleotide polymorphism (SNP) markers in linkage analysis is more powerful and cost-effective than current microsatellite marker assays. Here we performed a whole-genome scan on 115 White, non-Hispanic families segregating for alcohol dependence, using one 10.3-cM microsatellite marker set and two SNP data sets (0.33-cM, 0.78-cM spacing). Two definitions of alcohol dependence (ALDX1 and ALDX2) were used. Our multipoint nonparametric linkage analysis found alcoholism was nominal linked to 12 genomic regions. The linkage peaks obtained by using the microsatellite marker set and the two SNP sets had a high degree of correspondence in general, but the microsatellite marker set was insufficient to detect some nominal linkage peaks. The presence of linkage disequilibrium between markers did not significantly affect the results. Across the entire genome, SNP datasets had a much higher average linkage information content (0.33 cM: 0.93, 0.78 cM: 0.91) than did microsatellite marker set (0.57). The linkage peaks obtained through two SNP datasets were very similar with some minor differences. We conclude that genome-wide linkage analysis by using approximately 5,000 SNP markers evenly distributed across the human genome is sufficient and might be more powerful than current 10-cM microsatellite marker assays.  相似文献   

5.
High density lipoprotein cholesterol (HDL-C) is inversely associated with coronary heart disease and has a genetic component; however, linkage to HDL-C is not conclusive. Subfractions of HDL, such as HDL(3)-C, may be better phenotypes for linkage studies. Using HDL(3)-C levels measured on 907 Framingham Heart Study subjects from 330 families around 1987, we conducted a genome-wide variance components linkage analysis with 401 microsatellite markers spaced approximately 10 centimorgan (cM) apart. Nine candidate genes were identified and annotated using a bioinformatics approach in the region of the highest linkage peak. Twenty-eight single nucleotide polymorphisms (SNPs) were selected from these candidate genes, and linkage and family-based association fine mapping were conducted using these SNPs. The highest multipoint log-of-the-odds (LOD) score from the initial linkage analysis was 3.7 at 133 cM on chromosome 6. Linkage analyses with additional SNPs yielded the highest LOD score of 4.0 at 129 cM on chromosome 6. Family-based association analysis revealed that SNP rs2257104 in PLAGL1 at approximately 143 cM was associated with multivariable adjusted HDL(3) (P = 0.03). Further study of the linkage region and exploration of other variants in PLAGL1 are warranted to define the potential functional variants of HDL-C metabolism.  相似文献   

6.
Ulgen A  Li W 《BMC genetics》2005,6(Z1):S13
We compared linkage analysis results for an alcoholism trait, ALDX1 (DSM-III-R and Feigner criteria) using a nonparametric linkage analysis method, which takes into account allele sharing among several affected persons, for both microsatellite and single-nucleotide polymorphism (SNP) markers (Affymetrix and Illumina) in the Collaborative Study on the Genetics of Alcoholism (COGA) dataset provided to participants at the Genetic Analysis Workshop 14 (GAW14). The two sets of linkage results from the dense Affymetrix SNP markers and less densely spaced Illumina SNP markers are very similar. The linkage analysis results from microsatellite and SNP markers are generally similar, but the match is not perfect. Strong linkage peaks were found on chromosome 7 in three sets of linkage analyses using both SNP and microsatellite marker data. We also observed that for SNP markers, using the given genetic map and using the map by converting 1 megabase pair (1 Mb) to 1 centimorgan (cM), did not change the linkage results. We recommend the use of the 1 Mb-to-1 cM converted map in a first round of linkage analysis with SNP markers in which map integration is an issue.  相似文献   

7.
We performed a genome scan at an average resolution of 8 cM in 719 Finnish sib pairs with type 2 diabetes. Our strongest results are for chromosome 20, where we observe a weighted maximum LOD score (MLS) of 2.15 at map position 69.5 cM from pter and secondary weighted LOD-score peaks of 2.04 at 56.5 cM and 1.99 at 17.5 cM. Our next largest MLS is for chromosome 11 (MLS = 1.75 at 84.0 cM), followed by chromosomes 2 (MLS = 0.87 at 5.5 cM), 10 (MLS = 0.77 at 75.0 cM), and 6 (MLS = 0.61 at 112.5 cM), all under an additive model. When we condition on chromosome 2 at 8.5 cM, the MLS for chromosome 20 increases to 5.50 at 69.0 cM (P=.0014). An ordered-subsets analysis based on families with high or low diabetes-related quantitative traits yielded results that support the possible existence of disease-predisposing genes on chromosomes 6 and 10. Genomewide linkage-disequilibrium analysis using microsatellite marker data revealed strong evidence of association for D22S423 (P=.00007). Further analyses are being carried out to confirm and to refine the location of these putative diabetes-predisposing genes.  相似文献   

8.
A primary linkage map of the human chromosome 11q22-23 region   总被引:6,自引:0,他引:6  
We have constructed a genetic map of the human chromosomal region 11q22-23 by multipoint linkage analysis of 13 DNA polymorphisms that we have condensed into eight loci. An analysis for linkage disequilibrium between tightly linked probe/enzyme systems allows us to make specific recommendations for future DNA typing at these loci. The resulting sex-averaged multipoint map spans approximately 80 cM and differs considerably from previously reported genetic maps of this region. Our mathematically derived "most likely order" of the markers is compatible with physical mapping data using somatic cell hybrids. The known localizations of at least 14 functional genes and several disease loci to 11q22-23, including ataxia telangiectasia, make the mapping of this region especially relevant to studies of disease pathogenesis.  相似文献   

9.
We performed linkage and linkage disequilibrium (LD) mapping analyses to compare the power between microsatellite and single nucleotide polymorphism (SNP) markers. Chromosome-wide analyses were performed for a quantitative electrophysiological phenotype, ttth1, on chromosome 7. Multipoint analysis of microsatellite markers using the variance component (VC) method showed the highest LOD score of 4.20 at 162 cM, near D7S509 (163.7 cM). Two-point analysis of SNPs using the VC method yielded the highest LOD score of 3.98 in the Illumina SNP data and 3.45 in the Affymetrix SNP data around 152-153 cM. In family-based single SNP and SNP haplotype LD analysis, we identified seven SNPs associated with ttth1. We searched for any potential candidate genes in the location of the seven SNPs. The SNPs rs1476640 and rs768055 are located in the FLJ40852 gene (a hypothetical protein), and SNP rs1859646 is located in the TAS2R5 gene (a taste receptor). The other four SNPs are not located in any known or annotated genes. We found the high density SNP scan to be superior to microsatellites because it is effective in downstream fine mapping due to a better defined linkage region. Our study proves the utility of high density SNP in genome-wide mapping studies.  相似文献   

10.
Meuwissen TH  Goddard ME 《Genetics》2000,155(1):421-430
A multimarker linkage disequilibrium mapping method was developed for the fine mapping of quantitative trait loci (QTL) using a dense marker map. The method compares the expected covariances between haplotype effects given a postulated QTL position to the covariances that are found in the data. The expected covariances between the haplotype effects are proportional to the probability that the QTL position is identical by descent (IBD) given the marker haplotype information, which is calculated using the genedropping method. Simulation results showed that a QTL was correctly positioned within a region of 3, 1.5, or 0.75 cM in 70, 62, and 68%, respectively, of the replicates using markers spaced at intervals of 1, 0.5, and 0.25 cM, respectively. These results were rather insensitive to the number of generations since the QTL occurred and to the effective population size, except that 10 generations yielded rather poor estimates of the QTL position. The position estimates of this multimarker disequilibrium mapping method were more accurate than those from a single marker transmission disequilibrium test. A general approach for identifying QTL is suggested, where several stages of disequilibrium mapping are used with increasingly dense marker spacing.  相似文献   

11.
We performed multipoint linkage analysis using 83 markers from the SNP Consortium (TSC) SNP linkage map in 3 regions covering 190 cM previously scanned with microsatellite markers and found to be linked to type 2 diabetes. Since the average linkage disequilibrium present in the TSC SNP marker clusters is relatively low, we assumed the intracluster genetic distances were a reasonable small nonzero distance (0.03 cM) and performed linkage analysis using GENEHUNTER PLUS and ASM linkage analysis software. We found that for the pedigree structures and missing data patterns in our samples the average information content in all three regions and the LOD score curves in two regions obtained from the TSC SNP markers were similar to results obtained from microsatellite marker maps with 10 cM average spacing. We also give an algorithm which extends the Lander-Green algorithm to permit multipoint linkage analysis of clusters of tightly linked markers with arbitrarily high levels of intracluster linkage disequilibrium.  相似文献   

12.
For all known major apple scab resistance genes except Vr, molecular markers have been published. However, the precise position of some of these genes, in the apple genome, remains to be identified. Knowledge about the relative position of apple scab resistance genes is necessary to preliminarily evaluate the probability of success of their pyramidization. Pyramidization of different resistance genes into the same genotype is a reliable way to create cultivars with durable apple scab resistance. Applying the genome scanning approach (GSA), we identified the linkage group of the scab resistance gene Vm, derived from Malus micromalus, and we found a new molecular marker tightly associated with the gene. The simple sequence repeat Hi07h02, previously mapped on linkage group 17, cosegregates with the Vm gene (no recombinants in the 95 plants tested). The already published sequence-characterized amplified region Vm marker OPB12(687) was found to be linked at about 5 cM from the resistance gene and, therefore, this marker also maps on linkage group 17 of apple. This is the first report of the discovery of a major apple scab resistance gene on linkage group 17. The advantages of using GSA for the identification of molecular markers for qualitative traits are discussed.  相似文献   

13.
The domesticated silkworm, Bombyx mori, has strict food preferences and grows by feeding on mulberry leaves. However, "Sawa-J", an abnormal feeding habit strain selected from the genetic stock, feeds on an artificial diet without mulberry leaf powder. In this study, the food preference gene in Sawa-J was genetically identified using restriction fragment length polymorphisms (RFLPs) of a cDNA clone on each linkage group. Taking advantage of a lack of genetic recombination in females, reciprocal backcrossed F1 (BC1) progenies were independently prepared using a non-feeding strain, C108, as a mating partner of Sawa-J. Our results of linkage analysis and mapping proved that the feeding behavior is primarily controlled by a major recessive gene mapped at 20.2 cM on RFLP linkage group 9 (RFLG9), and clone e73 at a distance of 4.2 cM was found as the first linked molecular marker.  相似文献   

14.
A genetic linkage map of the mimetic butterfly Heliconius melpomene   总被引:1,自引:0,他引:1       下载免费PDF全文
Heliconius melpomene is a mimetic butterfly that exhibits great geographic variation in color pattern. We present here a genetic linkage map based on analysis of genetic markers in 73 individuals from a single F(2) family, offspring of a cross between H. m. cythera from western Ecuador and H. m. melpomene from French Guiana. A novel "three-step method" is described for the analysis of dominant markers in an F(2) cross, using outbred parental strains and taking advantage of the lack of crossing over in female Lepidoptera. This method is likely to prove useful for future mapping studies in outbred species with crossing over restricted to one sex, such as the Lepidoptera and Drosophila. The resulting linkage map has 21 linkage groups corresponding to the 21 chromosomes of H. melpomene and includes 219 AFLP markers, 23 microsatellites, 19 single-copy nuclear genes, and the color pattern switch genes Yb and Sb. The marker density is high, averaging >1/7 cM. The total map length is 1616 cM and the average chromosome length is 77 cM. The genome size of H. melpomene was estimated to be 292 Mb, giving a relationship of physical-to-map distance of 180 kb/cM. This map forms the basis for future comparative linkage analysis of color pattern evolution in Heliconius.  相似文献   

15.
利用连锁不平衡理论,人类遗传学家已能把影响人类疾病的质量基因定位在小至1cM区域内,有些基因已被克隆出来。罗泽伟等进一步发展统计分析方法检测及估算分子标记与QTL之间的连锁不平衡系数,从而提出了人类复杂遗传病高解析度基因定位的理论策略。以此为基础,进一步探讨了供试群体在双亲基因频率存在差异时检测QTL和检测QTL互作的方法,给出了有关的理论结果。  相似文献   

16.
Age-related macular degeneration (AMD) is a complex multifactorial disease that affects the central region of the retina. AMD is clinically heterogeneous, leading to geographic atrophy (GA) and/or choroidal neovascularization (CNV) at advanced stages. Considerable data exists in support of a genetic predisposition for AMD. Recent linkage studies have provided evidence in favor of several AMD susceptibility loci. We have performed a high-resolution (5-cM) genome scan of 412 affected relative pairs that were enriched for late-stage disease (GA and/or CNV). Nonparametric linkage analysis was performed using two different diagnostic criteria and also by dividing the affected individuals according to GA or CNV phenotype. Our results demonstrate evidence of linkage in regions that were suggested in at least one previous study at chromosomes 1q (236-240 cM in the Marshfield genetic map), 5p (40-50 cM), and 9q (111 cM). Multipoint analysis of affected relatives with CNV provided evidence of additional susceptibility loci on chromosomes 2p (10 cM) and 22q (25 cM). A recently identified Gln5345Arg change in HEMICENTIN-1 on chromosome 1q25 was not detected in 274 affected members in the restricted group with AMD, 346 additional patients with AMD, and 237 unaffected controls. Our results consolidate the chromosomal locations of several AMD susceptibility loci and, together with previous reports, should facilitate the search for disease-associated sequence variants.  相似文献   

17.
The gene for variegate porphyria (VP), an autosomal dominant disease with a high prevalence in South Africa, evidently due to a founder effect, was previously mapped to chromosome 14q32. In the current study this localization was evaluated by linkage and haplotype analyses using microsatellite markers spanning a region of more than 20 cM on chromosome 14q32. In many recent studies linkage disequilibrium between disease and marker loci has been utilized to map genes in founder populations, but we could not find any association between VP and the markers used in this study. Our data suggest that the allocation of VP to chromosome 14q32 may be incorrect. Received: 1 September 1995 / Revised: 1 November 1995  相似文献   

18.
The E and Z pheromone strains of the European corn borer (ECB) provide an exceptional model system for examining the genetic basis of sexual isolation. Differences at two major genes account for variation in female pheromone production and male behavioral response, components of the pheromone communication system known to be important for mate recognition and mate choice. Strains of ECB are morphologically indistinguishable, and surveys of allozyme and DNA sequence variation have revealed significant allele frequency differences at only a single sex-linked locus, Tpi. Here we present a detailed genetic linkage map of ECB using AFLP and microsatellite markers and map the factors responsible for pheromone production (Pher) and male response (Resp). Our map covers 1697 cM and identifies all 31 linkage groups in ECB. Both Resp and Tpi map to the Z (sex) chromosome, but the distance between these markers (>20 cM) argues against the hypothesis that patterns of variation at Tpi are explained by tight linkage to this "speciation gene." However, we show, through analysis of marker density, that Tpi is located in a region of low recombination and suggest that a second Z-linked reproductive barrier could be responsible for the origin and/or persistence of differentiation at Tpi.  相似文献   

19.
Kim DS  Kim DH  Yoo JH  Kim BD 《Molecules and cells》2006,21(1):135-140
Cytoplasmic male sterility (CMS) in plants, which is due to failure to produce functional pollen, is a maternally inherited trait. Specific nuclear genes that sup-press CMS, termed fertility restorer (Rf) genes, have been identified in several plants. In this study, Rf-linked molecular markers in pepper (Capsicum annuum L.) were detected by bulked segregant analysis of eight amplified fragment length polymorphisms (AFLPs). Only AFRF8 was successfully converted to a cleaved amplified polymorphic sequence (CAPS) marker. This was named AFRF8CAPS and genotype determination using it agreed with that obtained with the original AFRF8. A linkage map with a total size of 54.1 cM was constructed with AFRF8CAPS and the seven AFLP markers using the Kosambi function. The AFRF8CAPS marker was shown to be closest to Rf with a genetic distance of 1.8 cM. These markers will be useful for fast and reliable detection of restorer lines during F(1) hybrid seed production and breeding programs in pepper.  相似文献   

20.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号