首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally synthesized quinones perform a variety of important cellular functions. Escherichia coli produce both ubiquinone and menaquinone, which are involved in electron transport. However, semiquinone intermediates produced during the one-electron reduction of these compounds, as well as through auto-oxidation of the hydroxyquinone product, generate reactive oxygen species that stress the cell. Here, we present the crystal structure of YgiN, a protein of hitherto unknown function. The three-dimensional fold of YgiN is similar to that of ActVA-Orf6 monooxygenase, which acts on hydroxyquinone substrates. YgiN shares a promoter with "modulator of drug activity B," a protein with activity similar to that of mammalian DT-diaphorase capable of reducing mendione. YgiN was able to reoxidize menadiol, the product of the "modulator of drug activity B" (MdaB) enzymatic reaction. We therefore refer to YgiN as quinol monooxygenase. Modulator of drug activity B is reported to be involved in the protection of cells from reactive oxygen species formed during single electron oxidation and reduction reactions. The enzymatic activities, together with the structural characterization of YgiN, lend evidence to the possible existence of a novel quinone redox cycle in E. coli.  相似文献   

2.
To counter antibiotic-resistant bacteria, we screened the Kitasato Institute for Life Sciences Chemical Library with bacterial quinol oxidase, which does not exist in the mitochondrial respiratory chain. We identified five prenylphenols, LL-Z1272β, γ, δ, ? and ζ, as new inhibitors for the Escherichia coli cytochrome bd. We found that these compounds also inhibited the E. coli bo-type ubiquinol oxidase and trypanosome alternative oxidase, although these three oxidases are structurally unrelated. LL-Z1272β and ? (dechlorinated derivatives) were more active against cytochrome bd while LL-Z1272γ, δ, and ζ (chlorinated derivatives) were potent inhibitors of cytochrome bo and trypanosome alternative oxidase. Thus prenylphenols are useful for the selective inhibition of quinol oxidases and for understanding the molecular mechanisms of respiratory quinol oxidases as a probe for the quinol oxidation site. Since quinol oxidases are absent from mammalian mitochondria, LL-Z1272β and δ, which are less toxic to human cells, could be used as lead compounds for development of novel chemotherapeutic agents against pathogenic bacteria and African trypanosomiasis.  相似文献   

3.
Mycobacterium tuberculosis infects millions worldwide. The Structural Genomics Consortium for M. tuberculosis has targeted all genes from this bacterium in hopes of discovering and developing new therapeutic agents. Open reading frame Rv0793 from M. tuberculosis was annotated with an unknown function. The 3-dimensional structure of Rv0793 has been solved to 1.6 A resolution. Its structure is very similar to that of Streptomyces coelicolor ActVA-Orf6, a monooxygenase that participates in tailoring of polyketide antibiotics in the absence of a cofactor. It is also similar to the recently solved structure of YgiN, a quinol monooxygenase from Escherichia coli. In addition, the structure of Rv0793 is similar to several structures of other proteins with unknown function. These latter structures have been determined recently as a result of structural genomic projects for various bacterial species. In M. tuberculosis, Rv0793 and its homologs may represent a class of monooygenases acting as reactive oxygen species scavengers that are essential for evading host defenses. Since the most prevalent mode of attack by the host defense on M. tuberculosis is by reactive oxygen species and reactive nitrogen species, Rv0793 may provide a novel target to combat infection by M. tuberculosis.  相似文献   

4.
Possible pathways by which brassinosteroids affect the monooxygenase enzymatic system of mammalian liver microsomes, which is involved in the transformation of a broad spectrum of xenobiotics, were studied. The role of the structure of the side chain of brassinosteroids in the regulation of monooxygenase activity was studied using two natural compounds (24-epibrassinolide and 28-homobrassinolide) and two synthetic analogues, (22S, 23S-dihydroxy) stereoisomers. The results of this study show that brassinosteroids can directly influence the functioning of the microsomal enzymatic system. It was found that the degree of this influence depends on the side chain structure. This suggests the possibility of targeted modification of natural compounds to ensure the desired physiological effects.  相似文献   

5.
Acidianus ambivalens is a hyperthermoacidophilic archaeon which grows optimally at approximately 80 degrees C and pH 2.5. The terminal oxidase of its respiratory system is a membrane-bound quinol oxidase (cytochrome aa(3)) which belongs to the heme-copper oxidase superfamily. One difference between this quinol oxidase and a majority of the other members of this family is that it lacks the highly-conserved glutamate (Glu(I-286), E. coli ubiquinol oxidase numbering) which has been shown to play a central role in controlling the proton transfer during reaction of reduced oxidases with oxygen. In this study we have investigated the dynamics of the reaction of the reduced A. ambivalens quinol oxidase with O(2). With the purified enzyme, two kinetic phases were observed with rate constants of 1.8&z.ccirf;10(4) s(-1) (at 1 mM O(2), pH 7.8) and 3. 7x10(3) s(-1), respectively. The first phase is attributed to binding of O(2) to heme a(3) and oxidation of both hemes forming the 'peroxy' intermediate. The second phase was associated with proton uptake from solution and it is attributed to formation of the 'oxo-ferryl' state, the final state in the absence of quinol. In the presence of bound caldariella quinol (QH(2)), heme a was re-reduced by QH(2) with a rate of 670 s(-1), followed by transfer of the fourth electron to the binuclear center with a rate of 50 s(-1). Thus, the results indicate that the quinol donates electrons to heme a, followed by intramolecular transfer to the binuclear center. Moreover, the overall electron and proton-transfer kinetics in the A. ambivalens quinol oxidase are the same as those in the E. coli ubiquinol oxidase, which indicates that in the A. ambivalens enzyme a different pathway is used for proton transfer to the binuclear center and/or other protonatable groups in an equivalent pathway are involved. Potential candidates in that pathway are two glutamates at positions (I-80) and (I-83) in the A. ambivalens enzyme (corresponding to Met(I-116) and Val(I-119), respectively, in E. coli cytochrome bo(3)).  相似文献   

6.
An FMN-dependent NADH-quinone reductase is induced in Escherichia coli by growing the cells in the presence of menadione (2-methyl-1,4-naphthoquinone). Since the properties of induced enzyme are very similar to those of NAD(P)H: (quinone-acceptor) oxidoreductase (EC 1.6.99.2), known as DT-diaphorase, from animal cells, structural requirements of quinone derivatives as an inducer of NADH-quinone reductase in E. coli were examined. Among quinone derivatives examined, it was found that 2-alkyl-1,4-quinone structure with C-3 unsubstituted or substituted with Br is critical as a common inductive signal. Michael reaction acceptors which have been reported to be strong inducers of DT-diaphorase in mouse hepatoma cells were not always effective inducers in E. coli. However, several compounds, such as 2-methylene-4-butyrolactone, methylacrylate and methyl vinyl ketone, showed a slight inductive activity. The efficient inducers of NADH-quinone reductase in E. coli contain 1,4-quinone structure as a part of the inductive signal. These compounds belong to Michael acceptors and are likely to conjugate with thiol compounds such as glutathione.  相似文献   

7.
To clone novel type 1 Baeyer-Villiger monooxygenase (BVMO) genes, we isolated or collected 25 bacterial strains able to grow on alicyclic compounds. Twelve of the bacterial strains yielded polymerase chain reaction (PCR) fragments with highly degenerate primers based on the sequences of known and putative BVMOs. All these fragments were found to encode peptides homologous to published BVMO sequences. The complete BVMO genes and flanking DNA were cloned from a Comamonas, a Xanthobacter and a Rhodococcus strain using the PCR fragments as probes. BVMO genes cloned from the first two strains could be expressed to high levels in Escherichia coli using standard expression vectors, and the recombinants converted cyclopentanone and cyclohexanone to the corresponding lactones. The Rhodococcus BVMO, a putative steroid monooxygenase, could be expressed after modification of the N-terminal sequence. However, recombinants expressing this protein did not show activity towards progesterone. An esterase homologue located directly upstream of the Xanthobacter BVMO gene and a dehydrogenase homologue encoded directly downstream of the Comamonas sp. NCIMB 9872 BVMO gene were also expressed in E. coli and shown to specify lactone hydrolase and cyclohexanol dehydrogenase activity respectively.  相似文献   

8.
The crystal structure of Escherichia coli nitrate reductase A (NarGHI) in complex with pentachlorophenol has been determined to 2.0 A of resolution. We have shown that pentachlorophenol is a potent inhibitor of quinol:nitrate oxidoreductase activity and that it also perturbs the EPR spectrum of one of the hemes located in the membrane anchoring subunit (NarI). This new structural information together with site-directed mutagenesis data, biochemical analyses, and molecular modeling provide the first molecular characterization of a quinol binding and oxidation site (Q-site) in NarGHI. A possible proton conduction pathway linked to electron transfer reactions has also been defined, providing fundamental atomic details of ubiquinol oxidation by NarGHI at the bacterial membrane.  相似文献   

9.
The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal (Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover.  相似文献   

10.
Corynebacterium glutamicum grew on resorcinol as a sole source of carbon and energy. By genome-wide data mining, two gene clusters, designated NCgl1110-NCgl1113 and NCgl2950-NCgl2953, were proposed to encode putative proteins involved in resorcinol catabolism. Deletion of the NCgl2950-NCgl2953 gene cluster did not result in any observable phenotype changes. Disruption and complementation of each gene at NCgl1110-NCgl1113, NCgl2951, and NCgl2952 indicated that these genes were involved in resorcinol degradation. Expression of NCgl1112, NCgl1113, and NCgl2951 in Escherichia coli revealed that NCgl1113 and NCgl2951 both coded for hydroxyquinol 1,2-dioxygenases and NCgl1112 coded for maleylacetate reductases. NCgl1111 encoded a putative monooxygenase, but this putative hydroxylase was very different from previously functionally identified hydroxylases. Cloning and expression of NCgl1111 in E. coli revealed that NCgl1111 encoded a resorcinol hydroxylase that needs NADPH as a cofactor. E. coli cells containing Ncgl1111 and Ncgl1113 sequentially converted resorcinol into maleylacetate. NCgl1110 and NCgl2950 both encoded putative TetR family repressors, but only NCgl1110 was transcribed and functional. NCgl2953 encoded a putative transporter, but disruption of this gene did not affect resorcinol degradation by C. glutamicum. The function of NCgl2953 remains unclear.  相似文献   

11.
Better drugs are urgently needed for the treatment of African sleeping sickness. We tested a series of promising anticancer agents belonging to the 4-substituted 4-hydroxycyclohexa-2,5-dienones class ("quinols") and identified several with potent trypanocidal activity (EC(50) < 100 nM). In mammalian cells, quinols are proposed to inhibit the thioredoxin/thioredoxin reductase system, which is absent from trypanosomes. Studies with the prototypical 4-benzothiazole-substituted quinol, PMX464, established that PMX464 is rapidly cytocidal, similar to the arsenical drug, melarsen oxide. Cell lysis by PMX464 was accelerated by addition of sublethal concentrations of glucose oxidase implicating oxidant defenses in the mechanism of action. Whole cells treated with PMX464 showed a loss of trypanothione (T(SH)(2)), a unique dithiol in trypanosomes, and tryparedoxin peroxidase (TryP), a 2-Cys peroxiredoxin similar to mammalian thioredoxin peroxidase. Enzyme assays revealed that T(SH)(2), TryP, and a glutathione peroxidase-like tryparedoxin-dependent peroxidase were inhibited in time- and concentration-dependent manners. The inhibitory activities of various quinol analogues against these targets showed a good correlation with growth inhibition of Trypanosoma brucei. The monothiols glutathione and L-cysteine bound in a 2:1 ratio with PMX464 with K(d) values of 6 and 27 μM, respectively, whereas T(SH)(2) bound more tightly in a 1:1 ratio with a K(d) value of 430 nM. Overexpression of trypanothione synthetase in T. brucei decreased sensitivity to PMX464 indicating that the key metabolite T(SH)(2) is a target for quinols. Thus, the quinol pharmacophore represents a novel lead structure for the development of a new drug against African sleeping sickness.  相似文献   

12.
Resistance of Candida albicans to reactive oxygen species is thought to enhance its virulence in mammalian hosts. Genes such as SOD1, which encodes the anti-oxidant, superoxide dismutase, are known virulence factors. We disrupted the gene GRX2, which encodes a putative glutathione reductase (glutaredoxin) in C. albicans, and we compared the mutant with an sod1Deltamutant. In vitro, the grx2Deltastrain, but not the sod1Delta strain, was defective in hypha formation. The grx2Deltastrain, but not sod1Delta, was significantly more susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, both mutants were susceptible to 1 mM menadione, but grx2Deltanull alone was resistant to diamide. Both mutants were attenuated in a murine intravenous challenge model, and a GRX2 reintegrant regained partial virulence. Emphasis on the putative function of products of genes such as SOD1 and GRX2 in resistance to oxidative stress may oversimplify their functions in the virulence process, since the grx2Deltastrain also gave defective hypha formation. Both mutants were sensitive to menadione and were slow to form germ tubes, though growth rates matched controls once the lag phase was passed.  相似文献   

13.
BACKGROUND: The integral outer membrane protein X (OmpX) from Escherichia coli belongs to a family of highly conserved bacterial proteins that promote bacterial adhesion to and entry into mammalian cells. Moreover, these proteins have a role in the resistance against attack by the human complement system. Here we present the first crystal structure of a member of this family. RESULTS: The crystal structure of OmpX from E. coli was determined at 1.9 A resolution using multiple isomorphous replacement. OmpX consists of an eight-stranded antiparallel all-next-neighbor beta barrel. The structure shows two girdles of aromatic amino acid residues and a ribbon of nonpolar residues that attach to the membrane interior. The core of the barrel consists of an extended hydrogen-bonding network of highly conserved residues. OmpX thus resembles an inverse micelle. The structure explains the dramatically improved crystal quality of OmpX containing the mutation His100-->Asn, which made the X-ray analysis possible. The coordination spheres of two bound platinum ions are described. CONCLUSIONS: The OmpX structure shows that within a family of virulence-related membrane proteins, the membrane-spanning part of the protein is much better conserved than the extracellular loops. Moreover, these loops form a protruding beta sheet, the edge of which presumably binds to external proteins. It is suggested that this type of binding promotes cell adhesion and invasion and helps defend against the complement system. Although OmpX has the same beta-sheet topology as the structurally related outer membrane protein A (OmpA), their barrels differ with respect to the shear numbers and internal hydrogen-bonding networks.  相似文献   

14.
A catechol 2,3-dioxygenase (C23O) gene was found from Sulfolobus solfataricus strain 98/2. Heterologous thermophilic C23O expressed in Escherichia coli showed the highest activity against catechol and 4-chlorocatechol, and at neutral pH. The C23O gene located with a putative multicomponent monooxygenase (MM) gene cluster that exactly matched with the homologous region of S. solfataricus strain P2. Primary sequence comparison identified an insertion sequence (IS) element inserted into a putative MM protein A N-terminal fragment gene in strain 98/2. Both ends of the transposase gene in the IS element, ISC1234, were flanked by 19 bp inverted repeat and 4 bp direct repeat sequences which are typical features of mobile elements. Our analysis and the two geographically distant origins of strains 98/2 and P2 (USA and Italy, respectively) suggest that the two strains have evolved from a common ancestor.  相似文献   

15.
Benzophenone is an ultraviolet (UV)-absorbing agent that has been used in industry and medicine for more than 30 years. Consumers of cosmetics and sunscreens containing UV-absorbers are exposed to benzophenones on a daily basis, owing to the widespread use of these compounds. However, the efficacy of these compounds as scavengers of oxidative stress is still not well established. In the present study, we investigate the antioxidative capacity of six sunscreen benzophenone compounds. A primary myoblast culture was mixed in vitro with 100 microM menadione. The cytotoxic effect by menadione-induced oxidative stress was monitored by the lucigenin- or luminol-amplified chemiluminescence, methylthiotetrazole (MTT) assay, and the antioxidative effects of various benzophenone compounds were evaluated. The results showed that the addition of menadione can induce oxidative stress on myoblasts by superoxide and hydrogen peroxide production, which can be eradicated by superoxide dismutase (SOD) and catalase, respectively, in a dose-dependent mode. The catalase has a protective effect on the cytotoxicity induced by menadione as measured by the MTT assay, while the SOD does not. The selected benzophenones also have a significant scavenging effect on the menadione-induced cell death on the myoblasts. The ortho-dihydroxyl structure and other hydroxy groups in the same ring have a stronger scavenging effect on the superoxide anion on myoblasts; thus, a stable penoxy radical may be formed. The mechanism of this effect remains to be clarified.  相似文献   

16.
The cytochrome o complex of Escherichia coli is a ubiquinol oxidase which is the predominant respiratory terminal oxidase when the bacteria are grown under high oxygen tension. The amino acid sequences of three of the subunits of this quinol oxidase reveal a substantial relationship to the aa3-type cytochrome c oxidases. The two cytochrome components (b563.5 and o) and the single copper (CuB) present in the E. coli quinol oxidase appear to be equivalent to cytochrome a, cytochrome a3, and CuB of the aa3-type cytochrome c oxidases, respectively. These three prosthetic groups are all located within subunit I of the oxidase. Sequence alignments indicate only six totally conserved histidine residues among all known sequences of subunit I of the cytochrome c oxidases of various species plus the E. coli quinol oxidase. Site-directed mutagenesis has been used to change each of these totally conserved histidines with the presumption that two of these six must ligate to the low spin cytochrome center of the E. coli oxidase. The presence of the low spin cytochrome b563.5 component of the oxidase can be evaluated both by visible absorbance properties and by its EPR spectrum. The results unambiguously indicate that His-106 and His-421 are the ligands of the six-coordinate low spin cytochrome b563.5. Although the data are not definitive in making additional metal ligation assignments of the remaining four totally conserved histidines, a reasonable model is suggested for the structure of the catalytic core of the cytochrome o complex and, by extrapolation, of cytochrome c oxidase.  相似文献   

17.
EDTA is a chelating agent, widely used in many industries. Because of its ability to mobilize heavy metals and radionuclides, it can be an environmental pollutant. The EDTA monooxygenases that initiate EDTA degradation have been purified and characterized in bacterial strains BNC1 and DSM 9103. However, the genes encoding the enzymes have not been reported. The EDTA monooxygenase gene was cloned by probing a genomic library of strain BNC1 with a probe generated from the N-terminal amino acid sequence of the monooxygenase. Sequencing of the cloned DNA fragment revealed a gene cluster containing eight genes. Two of the genes, emoA and emoB, were expressed in Escherichia coli, and the gene products, EmoA and EmoB, were purified and characterized. Both experimental data and sequence analysis showed that EmoA is a reduced flavin mononucleotide-utilizing monooxygenase and that EmoB is an NADH:flavin mononucleotide oxidoreductase. The two-enzyme system oxidized EDTA to ethylenediaminediacetate (EDDA) and nitrilotriacetate (NTA) to iminodiacetate (IDA) with the production of glyoxylate. The emoA and emoB genes were cotranscribed when BNC1 cells were grown on EDTA. Other genes in the cluster encoded a hypothetical transport system, a putative regulatory protein, and IDA oxidase that oxidizes IDA and EDDA. We concluded that this gene cluster is responsible for the initial steps of EDTA and NTA degradation.  相似文献   

18.
《BBA》2019,1860(11):148080
The crystal structure of the enzyme previously characterized as a type-2 NADH:menaquinone oxidoreductase (NDH-2) from Thermus thermophilus has been solved at a resolution of 2.9 Å and revealed that this protein is, in fact, a coenzyme A-disulfide reductase (CoADR). Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Thermus thermophilus and is maintained in the reduced state by this enzyme (CoADR). Although the enzyme does exhibit NADH:menadione oxidoreductase activity expected for NDH-2 enzymes, the specific activity with CoAD as an electron acceptor is about 5-fold higher than with menadione. Furthermore, the crystal structure contains coenzyme A covalently linked Cys44, a catalytic intermediate (Cys44-S-S-CoA) reduced by NADH via the FAD cofactor. Soaking the crystals with menadione shows that menadione can bind to a site near the redox active FAD, consistent with the observed NADH:menadione oxidoreductase activity. CoADRs from other species were also examined and shown to have measurable NADH:menadione oxidoreductase activity. Although a common feature of this family of enzymes, no biological relevance is proposed. The CoADR from T. thermophilus is a soluble homodimeric enzyme. Expression of the recombinant TtCoADR at high levels in E. coli results in a small fraction that co-purifies with the membrane fraction, which was used previously to isolate the enzyme wrongly identified as a membrane-bound NDH-2. It is concluded that T. thermophilus does not contain an authentic NDH-2 component in its aerobic respiratory chain.  相似文献   

19.
A novel aldo-keto reductase (AKR) from Escherichia coli has been cloned, expressed and purified. This protein, YghZ, is distantly related (<40%) to mammalian aflatoxin dialdehyde reductases of the aldo-keto reductase AKR7 family and to potassium channel beta-subunits in the AKR6 family. The enzyme has been placed in a new AKR family (AKR14), with the designation AKR14A1. Sequences encoding putative homologues of this enzyme exist in many other bacteria. The enzyme can reduce several aldehyde and diketone substrates, including the toxic metabolite methylglyoxal. The K(m) for the model substrate 4-nitrobenzaldehyde is 1.06 mM and for the endogenous dicarbonyl methylglyoxal it is 3.4 mM. Overexpression of the recombinant enzyme in E. coli leads to increased resistance to methylglyoxal. It is possible that this enzyme plays a role in the metabolism of methylglyoxal, and can influence its levels in vivo.  相似文献   

20.
Squalene monooxygenase - a target for hypercholesterolemic therapy   总被引:1,自引:0,他引:1  
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes' inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号