首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mammalian chromosomes terminate with a 3' tail which consists of reiterations of the G-rich repeat, d(TTAGGG). The telomeric tail is the primer for replication by telomerase, and it may also invade telomeric duplex DNA to form terminal lariat structures, or T loops. Here we show that the ubiquitous and highly conserved mammalian protein hnRNP D interacts specifically with the G-rich strand of the telomeric repeat. A single gene encodes multiple isoforms of hnRNP D. All isoforms bind comparably to the G-rich strand, and certain isoforms can also bind tightly and specifically to the C-rich telomeric strand. G-rich telomeric sequences readily form structures stabilized by G-G pairing, which can interfere with telomere replication by telomerase. We show that hnRNP D binding to the G-rich strand destabilizes intrastrand G-G pairing and that hnRNP D interacts specifically with telomerase in human cell extracts. This biochemical analysis suggest that hnRNP D could function in vivo to destabilize structures formed by telomeric G-rich tails and facilitate their extension by telomerase.  相似文献   

3.
Recognition and elongation of telomeres by telomerase   总被引:9,自引:0,他引:9  
Telomeres stabilize chromosomal ends and allow their complete replication in vivo. In diverse eukaryotes, the essential telomeric DNA sequence consists of variable numbers of tandem repeats of simple, G + C rich sequences, with a strong strand bias of G residues on the strand oriented 5' to 3' toward the chromosomal terminus. This strand forms a protruding 3' over-hang at the chromosomal terminus in three different eukaryotes analyzed. Analysis of yeast and protozoan telomeres showed that telomeres are dynamic structures in vivo, being acted on by shortening and lengthening activities. We previously identified and partially purified an enzymatic activity, telomere terminal transferase, or telomerase, from the ciliate Tetrahymena. Telomerase is a ribonucleoprotein enzyme with essential RNA and protein components. This activity adds repeats of the Tetrahymena telomeric sequence, TTGGGG, onto the 3' end of a single-stranded DNA primer consisting of a few repeats of the G-rich strand of known telomeric, and telomere-like, sequences. The shortest oligonucleotide active as a primer was the decamer G4T2G4. Structural analysis of synthetic DNA oligonucleotides that are active as primers showed that they all formed discrete intramolecular foldback structures at temperatures below 40 degrees C. Addition of TTGGGG repeats occurs one nucleotide at a time by de novo synthesis, which is not templated by the DNA primer. Up to 8000 nucleotides of G4T2 repeats were added to the primer in vitro. We discuss the implications of this finding for regulation of telomerase in vivo and a model for telomere elongation by telomerase.  相似文献   

4.
端粒结合蛋白TRF2的研究进展   总被引:2,自引:0,他引:2  
张永炜  缪泽鸿  丁健 《生命科学》2006,18(3):239-243
端粒DNA结合蛋白TRF2(TTAGGG repeat binding factor-2)以二聚体形式通过Myb结构域与端粒重复序列TTAGGG结合,并与TRF1、TIN2、Rap1、TINT1及POT1蛋白组成Shelterin蛋白复合物,协同在端粒动态平衡维持过程中起关键作用,进而影响整个基因组的稳定性。此外,TRF2在细胞DNA损伤应答过程中可能发挥重要作用。本文将对TRF2结构和功能研究的最新进展进行综述。  相似文献   

5.
Telomere dynamics: the means to an end   总被引:1,自引:0,他引:1  
Telomeres are among the most important structures in eukaryotic cells. Creating the physical ends of linear chromosomes, they play a crucial role in maintaining genome stability, control of cell division, cell growth and senescence. In vertebrates, telomeres consist of G-rich repetitive DNA sequences (TTAGGG)n and specific proteins, creating a specialized structure called the telosome that through mutual interactions with many other factors in the cell give rise to dynamic regulation of chromosome maintenance. In this review, we survey the structural and mechanistic aspects of telomere length regulation and how these processes lead to alterations in normal and immortal cell growth.  相似文献   

6.
Changes of telomere lengths in human intracranial tumours   总被引:3,自引:0,他引:3  
The termini of human chromosomes comprise stretches of G-rich repeats that are about 5–20 kilobase (kb) in length. The size of the telomeres can be determined by hybridization with probes specific for these (ttaggg)n sequences after digestion of chromosomal DNA with appropriate restriction enzymes and electrophoretic separation of the fragments. Here, probing with the 32P-labelled synthetic (TTAGGG)3 oligonucleotide revealed length changes of the telomeres occurring in intracranial tumours. Among 60 samples analysed, 41.7% showed telomere elongation, and 21.7% telomere reduction, whereas 36.7% of the tumours exhibited equal lengths compared with the patients' peripheral blood leukocytes. Most of the elongated glioma telomeres exceeded in length those of untransformed astrocytes derived from human fetal tissue.  相似文献   

7.
8.
9.
E J Richards  S Chao  A Vongs    J Yang 《Nucleic acids research》1992,20(15):4039-4046
In an effort to learn more about the genomic organization of chromosomal termini in plants we employed a functional complementation strategy to isolate Arabidopsis thaliana telomeres in the yeast, Saccharomyces cerevisiae. Eight yeast episomes carrying A. thaliana telomeric sequences were obtained. The plant sequences carried on two episomes, YpAtT1 and YpAtT7, were characterized in detail. The telomeric origins of YpAtT1 and YpAtT7 insert DNAs were confirmed by demonstrating that corresponding genomic sequences are preferentially degraded during exonucleolytic digestion. The isolated telomeric restriction fragments contain G-rich repeat arrays characteristic of A. thaliana telomeres, as well as subterminal telomere-associated sequences (TASs). DNA sequence analysis revealed the presence of variant telomeric repeats at the centromere-proximal border of the terminal block of telomere repeats. The TAS flanking the telomeric G-rich repeat in YpAtT7 corresponds to a repetitive element present at other A. thaliana telomeres, while more proximal sequences are unique to one telomere. The YpAtT1 TAS is unique in the Landsberg strain of A. thaliana from which the clone originated; however, the Landsberg TAS cross-hybridizes weakly to a second telomere in the strain Columbia. Restriction analysis with cytosine methylation-sensitive endonucleases indicated that both TASs are highly methylated in the genome.  相似文献   

10.
We have previously identified in human fibroblasts a multisubunit protein (designated PGB) that specifically bound single-stranded G-rich microsatellite DNA sequences. PGB was later found to be identical, or closely related to translin, an octameric protein that bound single-stranded DNA consisting of sequences flanking chromosomal translocations. Here, we report that recombinant translin binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n, with higher affinities (Kdis approximately = 2 nM and Kdis approximately = 12.5 nM, respectively, in 100 mM NaCl and 25 degrees C) than the affinity with which it binds a prototypical sequence flanking translocation sites (Kdis approximately = 23 nM). Translin also binds d(GT)n and d(TTAGGG)n overhangs linked to double-stranded DNA with equilibrium constants in the nanomolar range. Formation of DNA quadruplexes by the d(TTAGGG)n repeats inhibits their binding to translin. A further study of the binding parameters revealed that the minimal length of d(GT)n and d(TTAGGG)n oligonucleotides that a translin octamer can bind is 11 nucleotides, but that such oligonucleotides containing up to 30 nucleotides can bind only a single translin octamer. However, the oligonucleotides d(GT)27 and d(TTAGGG)9 bind two octamers with negative cooperativity. Translin does not detectably bind single-stranded d(GT)n sequences embedded within double-stranded DNA. Based on our data, we propose that translin might be involved in the control of recombination at d(GT)n.d(AC)n microsatellites and in telomere maintenance.  相似文献   

11.
Human telomeric DNA consists of tandem repeats of the sequence 5'-d(TTAGGG)-3'. Guanine-rich DNA, such as that seen at telomeres, forms G-quadruplex secondary structures. Alternative forms of G-quadruplex structures can have differential effects on activities involved in telomere maintenance. With this in mind, we analyzed the effect of sequence and length of human telomeric DNA on G-quadruplex structures by native polyacrylamide gel electrophoresis and circular dichroism. Telomeric oligonucleotides shorter than four, 5'-d(TTAGGG)-3' repeats formed intermolecular G-quadruplexes. However, longer telomeric repeats formed intramolecular structures. Altering the 5'-d(TTAGGG)-3' to 5'-d(TTAGAG)-3' in any one of the repeats of 5'-d(TTAGGG)(4)-3' converted an intramolecular structure to intermolecular G-quadruplexes with varying degrees of parallel or anti-parallel-stranded character, depending on the length of incubation time and DNA sequence. These structures were most abundant in K(+)-containing buffers. Higher-order structures that exhibited ladders on polyacrylamide gels were observed only for oligonucleotides with the first telomeric repeat altered. Altering the sequence of 5'-d(TTAGGG)(8)-3' did not result in the substantial formation of intermolecular structures even when the oligonucleotide lacked four consecutive telomeric repeats. However, many of these intramolecular structures shared common features with intermolecular structures formed by the shorter oligonucleotides. The wide variability in structure formed by human telomeric sequence suggests that telomeric DNA structure can be easily modulated by proteins, oxidative damage, or point mutations resulting in conversion from one form of G-quadruplex to another.  相似文献   

12.
t-loops at trypanosome telomeres   总被引:14,自引:0,他引:14  
Mammalian telomeres form large duplex loops (t-loops) that may sequester chromosome ends by invasion of the 3' TTAGGG overhang into the duplex TTAGGG repeat array. Here we document t-loops in Trypanosoma brucei, a kinetoplastid protozoan with abundant telomeres due to the presence of many minichromosomes. These telomeres contained 10-20 kb duplex TTAGGG repeats and a 3' TTAGGG overhang. Electron microscopy of psoralen/UV cross-linked DNA revealed t-loops in enriched telomeric restriction fragments and at the ends of isolated minichromosomes. In mammals, t-loops are large (up to 25 kb), often comprising most of the telomere. Despite similar telomere lengths, trypanosome t-loops were much smaller (approximately 1 kb), indicating that t-loop sizes are regulated. Coating of non-cross-linked minichromosomes with Escherichia coli single-strand binding protein (SSB) often revealed 3' overhangs at both telomeres and several cross-linked minichromosomes had t-loops at both ends. These results suggest that t-loops and their prerequisite 3' tails can be formed on the products of both leading and lagging strand synthesis. We conclude that t-loops are a conserved feature of eukaryotic telomeres.  相似文献   

13.
Human telomeres are composed of duplex TTAGGG repeats and a 3' single-stranded DNA tail. The telomeric DNA is protected and regulated by the shelterin proteins, including the protection of telomeres 1 (POT1) protein that binds telomeric single-stranded DNA. The single-stranded tail can fold into G-quadruplex (G4) DNA. Both POT1 and G4 DNA play important roles in regulating telomere length homeostasis. To date, most studies have focused on individual quadruplexes formed by four TTAGGG repeats. Telomeric tails in human cells have on average six times as many repeats, and no structural studies have examined POT1 binding in competition with G4 DNA folding. Using single molecule atomic force microscopy imaging, we observed that the majority of the telomeric tails of 16 repeats formed two quadruplexes even though four were possible. The result that physiological telomeric tails rarely form the maximum potential number of G4 units provides a structural basis for the coexistence of G4 and POT1 on the same DNA molecule, which is observed directly in the captured atomic force microscopy images. We further observed that POT1 is significantly more effective in disrupting quadruplex DNA on long telomeric tails than an antisense oligonucleotide, indicating a novel POT1 activity beyond simply preventing quadruplex folding.  相似文献   

14.
Werner syndrome (WS) is a disorder characterized by features of premature aging and increased cancer that is caused by loss of the RecQ helicase WRN. Telomeres consisting of duplex TTAGGG repeats in humans protect chromosome ends and sustain cellular proliferation. WRN prevents the loss of telomeres replicated from the G-rich strand, which can form secondary G-quadruplex (G4) structures. Here, we dissected WRN roles in the replication of telomeric sequences by examining factors inherent to telomeric repeats, such as G4 DNA, independently from other factors at chromosome ends that can also impede replication. For this we used the supF shuttle vector (SV) mutagenesis assay. We demonstrate that SVs with [TTAGGG]6 sequences are stably replicated in human cells, and that the repeats suppress the frequency of large deletions despite G4 folding potential. WRN depletion increased the supF mutant frequency for both the telomeric and non-telomeric SVs, compared with the control cells, but this increase was much greater (27-fold) for telomeric SVs. The higher SV mutant frequencies in WRN-deficient cells were primarily due to an increase in large sequence deletions and rearrangements. However, WRN depletion caused a more dramatic increase in deletions and rearrangements arising within the telomeric SV (70-fold), compared with non-telomeric SV (8-fold). Our results indicate that WRN prevents large deletions and rearrangements during replication, and that this role is particularly important in templates with telomeric sequence. This provides a possible explanation for increased telomere loss in WS cells.  相似文献   

15.
G-rich telomeric DNA sequences can form G-quadruplex structures. The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and a shortened derivative (UP1) are active in telomere length regulation, and it has been reported that UP1 can unwind G-quadruplex structures. Here, we investigate the interaction of hnRNP A1 with G-quadruplex DNA structures containing the human telomere repeat (TTAGGG) by gel retardation assays, ensemble fluorescence energy transfer (FRET) spectroscopy, and single molecule FRET microscopy. Our biochemical experiments show that hnRNP A1 binds well to the G-quadruplex telomeric DNA. Ensemble and single molecule FRET measurements provide further insight into molecular conformation: the telomeric DNA overhang is found to be in a folded state in the absence of hnRNP A1 and to remain predominantly in a compact state when complexed with hnRNP A1. This finding is in contrast to the previously reported crystal structures of UP1-telomere DNA complexes where the DNA oligo within the protein-DNA complex is in a fully open conformation.  相似文献   

16.
Werner syndrome (WS) is a disorder characterized by features of premature aging and increased cancer that is caused by loss of the RecQ helicase WRN. Telomeres consisting of duplex TTAGGG repeats in humans protect chromosome ends and sustain cellular proliferation. WRN prevents the loss of telomeres replicated from the G-rich strand, which can form secondary G-quadruplex (G4) structures. Here, we dissected WRN roles in the replication of telomeric sequences by examining factors inherent to telomeric repeats, such as G4 DNA, independently from other factors at chromosome ends that can also impede replication. For this we used the supF shuttle vector (SV) mutagenesis assay. We demonstrate that SVs with [TTAGGG]6 sequences are stably replicated in human cells, and that the repeats suppress the frequency of large deletions despite G4 folding potential. WRN depletion increased the supF mutant frequency for both the telomeric and non-telomeric SVs, compared with the control cells, but this increase was much greater (27-fold) for telomeric SVs. The higher SV mutant frequencies in WRN-deficient cells were primarily due to an increase in large sequence deletions and rearrangements. However, WRN depletion caused a more dramatic increase in deletions and rearrangements arising within the telomeric SV (70-fold), compared with non-telomeric SV (8-fold). Our results indicate that WRN prevents large deletions and rearrangements during replication, and that this role is particularly important in templates with telomeric sequence. This provides a possible explanation for increased telomere loss in WS cells.  相似文献   

17.
Human chromosomes terminate in long, single-stranded, DNA overhangs of the repetitive sequence (TTAGGG)n. Sets of four adjacent TTAGGG repeats can fold into guanine quadruplexes (GQ), four-stranded structures that are implicated in telomere maintenance and cell immortalization and are targets in cancer therapy. Isolated GQs have been studied in detail, however much less is known about folding in long repeat sequences. Such chains adopt an enormous number of configurations containing various arrangements of GQs and unfolded gaps, leading to a highly frustrated energy landscape. To better understand this phenomenon, we used mutagenesis, thermal melting, and global analysis to determine stability, kinetic, and cooperativity parameters for GQ folding within chains containing 8–12 TTAGGG repeats. We then used these parameters to simulate the folding of 32-repeat chains, more representative of intact telomeres. We found that a combination of folding frustration and negative cooperativity between adjacent GQs increases TTAGGG unfolding by up to 40-fold, providing an abundance of unfolded gaps that are potential binding sites for telomeric proteins. This effect was most pronounced at the chain termini, which could promote telomere extension by telomerase. We conclude that folding frustration is an important and largely overlooked factor controlling the structure of telomeric DNA.  相似文献   

18.
To learn more about the mechanism of de novo telomere synthesis, we have characterized the sequence and structure of newly synthesized telomeres from Euplotes crassus. E. crassus is a particularly useful organism for studying telomere synthesis because millions of telomeres are made in each cell at a well-defined time during the sexual stage of the life cycle. These newly synthesized telomeres are approximately 50 bp longer than mature macronuclear telomeres. We have investigated the structure of the newly synthesized telomeres and have found that they are much more heterogeneous in length than mature telomeres. Most of the heterogeneity is present on the G-rich strand, indicating that the length of this strand is rather loosely controlled. In contrast, the length of the C-rich strand is much less variable, suggesting that synthesis of this strand is the more precisely regulated step in telomere addition. The G-rich strand exhibits variability both in the total number of G4T4 repeats and in the identity of the terminal nucleotide. In most cases, the G-rich strnd extends beyond the C-rich strand to leave a 3' overhang. While the size of this overhang is variable, the median length is 10 nucleotides. This research provides the first detailed picture of a newly synthesized telomere and has allowed us to formulate a model to describe the various steps involved in de novo telomere synthesis.  相似文献   

19.
Isolation and characterization of a human telomere.   总被引:17,自引:6,他引:11       下载免费PDF全文
A method is described that allows cloning of human telomeres in S. cerevisiae by joining human telomeric restriction fragments to yeast artificial chromosome halves. The resulting chimeric yeast-human chromosomes propagate as true linear chromosomes, demonstrating that the human telomere structure is capable of functioning in yeast and suggesting that telomere functions are evolutionarily conserved between yeast and human. One cloned human telomere, yHT1, contains 4 kb of human genomic DNA sequence next to the tandemly repeating TTAGGG hexanucleotide. Genomic hybridizations using both cloned DNA and TTAGGG repeats have revealed a common structural organization of human telomeres. This 4 kb of genomic DNA sequence is present in most, but not all, human telomeres, suggesting that the region is not involved in crucial chromosome-specific functions. However, the extent of common features among the human telomeres and possible similarities in organization with yeast telomeres suggest that this region may play a role in general chromosome behavior such as telomere-telomere interactions. Unlike the simple telomeric TTAGGG repeats, our cloned human genomic DNA sequence does not cross-hybridize with rodent DNA. Thus, this clone allows the identifications of the terminal restriction fragments of specific human chromosomes in human-rodent hybrid cells.  相似文献   

20.
Previous evidence indicates that telomeres resemble common fragile sites and present a challenge for DNA replication. The precise impediments to replication fork progression at telomeric TTAGGG repeats are unknown, but are proposed to include G-quadruplexes (G4) on the G-rich strand. Here we examined DNA synthesis and progression by the replicative DNA polymerase δ/proliferating cell nuclear antigen/replication factor C complex on telomeric templates that mimic the leading C-rich and lagging G-rich strands. Increased polymerase stalling occurred on the G-rich template, compared with the C-rich and nontelomeric templates. Suppression of G4 formation by substituting Li+ for K+ as the cation, or by using templates with 7-deaza-G residues, did not alleviate Pol δ pause sites within the G residues. Furthermore, we provide evidence that G4 folding is less stable on single-stranded circular TTAGGG templates where ends are constrained, compared with linear oligonucleotides. Artificially stabilizing G4 structures on the circular templates with the G4 ligand BRACO-19 inhibited Pol δ progression into the G-rich repeats. Similar results were obtained for yeast and human Pol δ complexes. Our data indicate that G4 formation is not required for polymerase stalling on telomeric lagging strands and suggest that an alternative mechanism, in addition to stable G4s, contributes to replication stalling at telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号