首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A growing body of data from nervous systems of marine invertebrate larvae provides an ideal background for comparisons among higher taxa. The currently available data from Bryozoa, however, do not allow for a consistent hypothesis of an ancestral state for this taxon, which would be necessary for phylogenetic inferences. The larval nervous systems of the four gymnolaemate species Flustrellidra hispida, Bugula fulva, Alcyonidium gelatinosum, and Bowerbankia gracilis are examined by means of antibody staining against the neurotransmitters serotonin and FMRFamide, as well as against acetylated α-tubulin. Despite considerable variation, a comparison reveals a common pattern of the distribution of serotonin. The neurotransmitter is found in at least two cells in the apical organ as well as in paired axial and lateral nerves emerging from a central nerve nodule. A ring nerve is present below the corona and at least two serotonergic cells are found between the corona cells. Serotonergic coronal cells might represent unique bryozoan features, whereas the remaining elements show resemblance to the situation found in most spiralian taxa. The data do not provide support for a closer relationship of Bryozoa to Phoronida or Brachiopoda.  相似文献   

2.
Muscular systems in gymnolaemate bryozoan larvae (Bryozoa: Gymnolaemata)   总被引:1,自引:1,他引:0  
  相似文献   

3.
Abstract. In contrast to marine bryozoans, the lophophore structure and the ciliary filter‐feeding mechanism in freshwater bryozoans have so far been only poorly described. Specimens of the phylactolaemate bryozoan Plumatella repens were studied to clarify the tentacular ciliary structures and the particle capture mechanism. Scanning electron microscopy revealed that the tentacles of the lophophore have a frontal band of densely packed cilia, and on each side a zigzag row of laterofrontal cilia and a band of lateral cilia. Phalloidin‐linked fluorescent dye showed no sign of muscular tissue within the tentacles. Video microscopy was used to describe basic characteristics of particle capture. Suspended particles in the incoming water flow, set up by the lateral ‘pump’ cilia on the tentacles, approach the tentacles with a velocity of 1–2 mm s‐1. Near the tentacles, the particles are stopped by the stiff sensory laterofrontal cilia acting as a mechanical sieve, as previously seen in marine bryozoans. The particle capture mechanism suggested is based on the assumed ability of the sensory stiff laterofrontal cilia to be triggered by the deflection caused by the drag force of the through‐flowing water on a captured food particle. Thus, when a particle is stopped by the laterofrontal cilia, the otherwise stiff cilia are presumably triggered to make an inward flick which brings the restrained particle back into the downward directed main current, possibly to be captured again further down in the lophophore before being carried to the mouth via the food groove. No tentacle flicks and no transport of captured particles on the frontal side of the tentacles were observed. The velocity of the metachronal wave of the water‐pumping lateral cilia was measured to be ~0.2 mm s‐1, the wavelength was ~7 μm, and hence the ciliary beat frequency estimated to be ~30 Hz (~20 °C). The filter feeding process in P. repens reported here resembles the ciliary sieving process described for marine bryozoans in recent years, although no tentacle flicks were observed in P. repens. The phylogenetic position of the phylactolaemates is discussed in the light of these findings.  相似文献   

4.
The present study considers 88 bryozoan species occurring in freshwater: 69 phylactolaemate and 19 gymnolaemate species. Roughly 49% of these species are confined to one zoogeographical region. The cosmopolitan status of species like Fredericella sultana, Plumatella repens or P. emarginata has to be reconsidered. Among the Phylactolaemata, which are phylogenetically older than the Gymnolaemata, the gelatinous species (Lophopodidae, Pectinatellidae, Cristatellidae) are more primitive than the branching tubular species (Plumatellidae, Fredericellidae). Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

5.
Genetic structuring was examined in two marine bryozoans with different modes of reproduction and dispersal of sexually derived larvae: Alcyonidium gelatinosum=A. polyoum, which produces brooded, short-lived lecithotrophic larvae, and A. mytili, an egg broadcaster with pelagic larvae. Randomly Amplified Polymorphic DNA (RAPD) data from these species were further compared with a population of the freshwater bryozoan, Cristatella mucedo, which reproduces mainly by colony fission and production of asexual statoblasts. Microgeographic comparisons of colonies from single sites revealed higher levels of genetic divergence between A. mytili colonies (similarity coefficient, 1−S=0.60) than between those of A. gelatinosum (1−S=0.33). A macrogeographic survey of population structure was undertaken in A. gelatinosum and A. mytili populations from several geographically separated areas. Analysis of Molecular Variance (AMOVA) results showed that for A. gelatinosum, 8% of the variance was found between populations and 92% within populations, and for A. mytili, 10% of the variance was found between populations and 90% within. These values were similar between the two species, despite the differences in larval strategy, and indicate that there are high levels of population genetic subdivision in both species. Results show a general correspondence between patterns of microgeographic genetic structuring and predictions based on reproductive mode and dispersal capacity, although the species with a pelagic larva showed less genetic variation between populations than would have been predicted. Analysis of the C. mucedo population showed a highly clonal structure, as predicted and in agreement with previous studies. Such data represent the first case of a DNA-based population survey of bryozoans with differing reproductive strategies.  相似文献   

6.
Riisgård, H.U., Okamura, B. and Funch, P. 2009. Particle capture in ciliary filter‐feeding gymnolaemate and phylactolaemate bryozoans – a comparative study. —Acta Zoologica (Stockholm) 91 : 416–425. We studied particle capture using video‐microscopy in two gymnolaemates, the marine cheilostome Electra pilosa and the freshwater ctenostome Paludicella articulata, and three phylactolaemates, Fredericella sultana with a circular funnel‐shaped lophophore, and Cristatella mucedo and Lophophus crystallinus, both with a horseshoe‐shaped lophophore. The video‐microscope observations along with studies of lophophore morphology and ultrastructure indicated that phylactolaemate and gymnolaemate bryozoans with a diversity of lophophore shapes rely on the same basic structures and mechanisms for particle capture. Our study also demonstrates that essential features of the particle capture process resemble one another in bryozoans, brachiopods and phoronids.  相似文献   

7.
Fossil bryozoans sometimes contain fossilised brown bodies which remain after polypide degeneration. Position and shape of brown bodies as well as different skeletal diaphragms within living chambers allow outlining of autozooid anatomy in Palaeozoic trepostome bryozoans. In some trepostome bryozoans short autozooids were restricted by complete basal diaphragms to distal parts of autozooecia. In species with alternating hemiphragms, as in the specimen ofHemiphragma sp. described here, long autozooids occupied the entire autozooecial chambers. Their short polypides were positioned in distal parts of the autozooid. Both anatomic types correspond to the progressive polypide cycle afterBoardman. For species with ring septa, non-alternating hemiphragms (studied in an example ofNipponostenopora karatauensis) as well as without any diaphragms the stationary type of polypide cycle seems also to be possible. In that case, the polypides should be as long as the cystid.   相似文献   

8.
Although only a small fraction of the estimated 6000 extant bryozoan species has been analysed in a molecular phylogenetic context, the resultant trees have increased our understanding of the interrelationships between major bryozoan groups, as well as between bryozoans and other metazoan phyla. Molecular systematic analyses have failed to recover the Lophophorata as a monophyletic clade until recently, when phylogenomic data placed the Brachiopoda as sister to a clade formed by Phoronida + Bryozoa. Among bryozoans, class Phylactolaemata has been shown to be the sister group of Gymnolaemata + Stenolaemata, corroborating earlier anatomical inferences. Despite persistent claims, there are no unequivocal bryozoans of Cambrian age: the oldest bryozoans are stenolaemates from the Tremadocian of China. Stenolaemates underwent a major radiation during the Ordovician, but the relationships between the six orders involved are poorly understood, mostly because the simple and plastic skeletons of stenolaemates make phylogenetic analyses difficult. Bryozoans were hard‐hit by the mass extinction/s in the late Permian and it was not until the Middle Jurassic that they began to rediversify, initially through the cyclostome stenolaemates. The most successful post‐Palaeozoic order (Cheilostomata) evolved a calcareous skeleton de novo from a soft‐bodied ancestor in the Late Jurassic, maintained a low diversity until the mid‐Cretaceous and then began to radiate explosively. A remarkable range of morphological structures in the form of highly modified zooidal polymorphs, or non‐zooidal or intrazooidal modular elements, is postulated to have evolved repeatedly in this group. Crucially, many of these structures have been linked to micropredator protection and can be interpreted as key traits linked to the diversification of cheilostomes.  相似文献   

9.
A year-round study was conducted to examine feeding habits and food resources of the filter-feeding Trichoptera Arctopsyche grandis and Brachycentrus occidentalis along a regulated mountain stream gradient. There was a well defined longitudinal species replacement with A. grandis reaching maximum densities 2.3 kilometers below the impoundment, and concomitant with its decline downstream was an increase in B. occidentalis. At all sampling sites the < 75 µm organic seston fraction usually consisted primarily of diatoms (>70%, by areal estimate on microscope slides), whereas the 75–250 µm and > 250 µm seston fractions were predominantly composed of detritus (> 80 %). B. occidentalis larvae consumed primarily detritus and diatoms (> 70 % of the diet), while A. grandis ingested a variety of materials with animals, detritus and/or filamentous algae often constituting > 80% of the diet. Animal material was over-represented in the diets of both species when compared with amounts in the seston. Feeding habits provided partial explanations for the distinct longitudinal distribution patterns of filter-feeding Trichoptera observed in the regulated river.  相似文献   

10.
Based on morphological evidence, Bryozoa together with Phoronida and Brachiopoda are traditionally combined in the group Lophophorata, although this view has been recently challenged by molecular studies. The core of the concept lies in the presence of the lophophore as well as the nature and arrangement of the body cavities. Bryozoa are the least known in this respect. Here, we focused on the fine structure of the body cavity in 12 bryozoan species: 6 gymnolaemates, 3 stenolaemates and 3 phylactolaemates. In gymnolaemates, the complete epithelial lining of the body cavity is restricted to the lophophore, gut walls, and tentacle sheath. By contrast, the cystid walls are composed only of the ectocyst-producing epidermis without a coelothelium, or an underlying extracellular matrix; only the storage cells and cells of the funicular system contact the epidermis. The nature of the main body cavity in gymnolaemates is unique and may be considered as a secondarily modified coelom. In cyclostomes, both the lophophoral and endosaccal cavities are completely lined with coelothelium, while the exosaccal cavity only has the epidermis along the cystid wall. In gymnolaemates, the lophophore and trunk cavities are divided by an incomplete septum and communicate through two pores. In cyclostomes, the septum has a similar location, but no openings. In Phylactolaemata, the body cavity is undivided: the lophophore and trunk coeloms merge at the bases of the lophophore arms, the epistome cavity joins the trunk, and the forked canal opens into the arm coelom. The coelomic lining of the body is complete except for the epistome, lophophoral arms, and the basal portions of the tentacles, where the cells do not interlock perfectly (this design probably facilitates the ammonia excretion). The observed partitioning of the body cavity in bryozoans differs from that in phoronids and brachiopods, and contradicts the Lophophorata concept.  相似文献   

11.
1. Invasive dreissenid mussels are known to cause large ecosystem changes because of their high filter‐feeding capacity, while native bioturbators may interfere with the mussels filter feeding. In this experiment, we investigated indirect environmental interactions between invasive filter‐feeding dreissenid mussels (zebra and quagga mussels) and native recolonizing bioturbating hexagenid mayflies (Hexagenia) at two mussel densities and two Hexagenia densities in a 2‐month long laboratory experiment. 2. Mean turbidity increased with increasing density of Hexagenia and decreased with increasing density of mussels. Turbidity showed the fastest decline at the highest mussel density, and no decline or a lower rate of decline at the low mussel density, dependent on Hexagenia density. 3. Mussel growth decreased with increasing Hexagenia density at low but not at high mussel density. Moreover, growth of mussels decreased as a function of increased mean turbidity at low mussel density but not at high mussel density. Filtering activity at the highest mussel density increased after introduction of food at the lower two densities of Hexagenia, but was constantly high at the highest Hexagenia density. 4. There was no difference in emergence of Hexagenia among the treatments, but mortality of Hexagenia was higher in the presence of mussels than in their absence. 5. Our results indicate that interactions between dreissenids and hexagenids are mediated through the sediment, and depend on density of both dreissenids and hexagenids. As the natural densities of these animals vary considerably within lakes, their growth and survival because of indirect environmental interactions is expected to vary spatially.  相似文献   

12.
1. We conducted enclosure experiments in a shallow eutrophic lake, in which a biomass gradient of the filter-feeding planktivore, silver carp, Hypophthalmichthys molitrix Valenciennes, was created, and subsequent community changes in both zooplankton and phytoplankton were examined.
2. During a summer experiment, a bloom of Anabaena flos-aquae developed (≈ 8000 cells mL−1) solely in an enclosure without silver carp. Concurrent with, or slightly preceding the Anabaena bloom, the number of rotifer species and their abundance increased from seven to twelve species (1700–14 400 organisms L−1) after the bloom in this fish-free enclosure. Protozoans and bacteria were generally insensitive to the gradient of silver carp biomass.
3. During an autumn experiment, on the other hand, large herbivorous crustaceans were more efficient than silver carp in suppressing the algae, partly because the lower water temperature (≈ 24 °C) inhibited active feeding of this warm-water fish and also formation of algal colonies. Heterotrophic nanoflagellate and bacterial densities were also influenced negatively by the crustaceans.
4. Correspondence analysis (CA) was applied to the weekly community data of zooplankton and phytoplankton. A major effect detected in the zooplankton community was the presence/absence of silver carp rather than the biomass of silver carp, whereas that in the phytoplankton community was the fish biomass before the Anabaena bloom, but shifted to the presence/absence of the fish after the bloom.  相似文献   

13.
Many animal phyla have the physiological ability to produce biomineralized skeletons with functional roles that have been shaped by natural selection for more than 500 million years. Among these are bryozoans, a moderately diverse phylum of aquatic invertebrates with a rich fossil record and importance today as bioconstructors in some shallow‐water marine habitats. Biomineralizational patterns and, especially, processes are poorly understood in bryozoans but are conventionally believed to be similar to those of the related lophotrochozoan phyla Brachiopoda and Mollusca. However, bryozoan skeletons are more intricate than those of these two phyla. Calcareous skeletons have been acquired independently in two bryozoan clades – Stenolaemata in the Ordovician and Cheilostomata in the Jurassic – providing an evolutionary replicate. This review aims to highlight the importance of biomineralization in bryozoans and focuses on their skeletal ultrastructures, mineralogy and chemistry, the roles of organic components, the evolutionary history of bimineralization in bryozoans with respect to changes in seawater chemistry, and the impact of contemporary global changes, especially ocean acidification, on bryozoan skeletons. Bryozoan skeletons are constructed from three different wall types (exterior, interior and compound) differing in the presence/absence and location of organic cuticular layers. Skeletal ultrastructures can be classified into wall‐parallel (i.e. laminated) and wall‐perpendicular (i.e. prismatic) fabrics, the latter apparently found in only one of the two biomineralizing clades (Cheilostomata), which is also the only clade to biomineralize aragonite. A plethora of ultrastructural fabrics can be recognized and most occur in combination with other fabrics to constitute a fabric suite. The proportion of aragonitic and bimineralic bryozoans, as well as the Mg content of bryozoan skeletons, show a latitudinal increase into the warmer waters of the tropics. Responses of bryozoan mineralogy and skeletal thickness to oscillations between calcite and aragonite seas through geological time are equivocal. Field and laboratory studies of living bryozoans have shown that predicted future changes in pH (ocean acidification) combined with global warming are likely to have detrimental effects on calcification, growth rate and production of polymorphic zooids for defence and reproduction, although some species exhibit reasonable levels of resilience. Some key questions about bryozoan biomineralization that need to be addressed are identified.  相似文献   

14.
The technique of X-ray cinematography was used to study pharyngeal movements in Abramis brama (L.). The theoretical and practical problems in X-ray cinematography of feeding fish are discussed, as well as criteria for the selection of images suited for detailed measurements.
Respiration and filter-feeding on Daphnia pulex (length c . 1 mm) show different gill arch movement patterns in bream. Slits between gill-arches are kept smaller during filter-feeding. In addition, during filter-feeding, this inter-arch distance decreases considerably in a posterior direction. The hypothesis that particle retention occurs on the slits formed between adjacent gillarches and their gill-rakers is not supported by the present results.  相似文献   

15.
Biodiversity and biogeography of southern temperate and polar bryozoans   总被引:2,自引:0,他引:2  
Aim To describe the distribution of biodiversity and endemism of bryozoans in southern temperate and polar waters. We hypothesized that we would find: (1) no strong latitudinal richness gradient; (2) striking contrasts in richness and endemism between clades and between regions; and (3) that faunal similarity of regions would cluster geographically around each southern continent. Location South Atlantic, Indian and Pacific Oceans and the Southern Ocean. Methods We constructed a data base from known literature, regional data bases and recent finds. We regionalized each southern continent, calculated levels of richness and endemism for each region and continent, and used primer 5 to perform multivariate statistical analysis. Results A third (1681) of global bryozoan species described occur south of 30° S, of which c. 87% were cheilostomes. In richness we found no latitudinal cline and change across longitude was stronger. New Zealand was richest and had the most (60%) endemic species, followed by Antarctica at 57%. There were striking contrasts in regional richness and endemism between clades but the highest levels of between‐region similarity were around Antarctica. The timing of past continent connectivity was reflected. Main conclusions Bryozoans show strong hemispherical asymmetry in richness and, like molluscs and corals, decrease away from Australasia rather than with latitude. Species endemism is much lower in Antarctic bryozoans than previously thought, and as this taxon is not particularly dispersive and is now amongst the best studied regionally, maybe Antarctic endemism in general is lower and Antarctica less cut‐off to species dispersal than previously thought. However, Antarctic generic endemism is double the level previously calculated and regional faunal similarities are much higher than around other continents – both reflecting long‐term isolation. Bryozoans, in contrast to the paradigm of Antarctic fauna, may be fairly robust to predicted climate change. Paradoxically, they may also be one of the best taxa to monitor to sensitively detect marine benthic responses.  相似文献   

16.
Cyclostomes are the only order of stenolaemate bryozoans living today. The non-feeding larvae of modern cyclostomes metamorphose on settlement to produce a calcified dome-shaped protoecium. Protoecial diameter provides a proxy for larval size. The sparse data available on living cyclostomes suggests that protoecial diameter is about one-and-a-half times greater than larval width. Here we use protoecial diameter to estimate larval sizes in fossil and Recent cyclostome species. A total of 233 protoecia were measured, 143 from Recent cyclostomes and 90 from fossil cyclostomes, of which 84 came from the Jurassic. Protoecial diameter ranged from 82.5 to 690 μm, with 89% of protoecia having diameters between 100 and 300 μm. A comparison of 30 Jurassic with 51 Recent taxa of tubuliporine cyclostomes showed a significant difference in size frequency. Although the Recent taxa have a larger size range (83–465 μm) than the Jurassic taxa (125–249 μm), Recent species have a lower mode (125–150 μm) than the Jurassic species (175–200 μm). Most Jurassic cyclostomes may therefore have had larger larvae than their extant relatives. Reduction in larval size may be a component of the previously hypothesized reduction in overall body size resulting from competitive displacement by cheilostome bryozoans.  相似文献   

17.
SYNOPSIS Cilia detached from mating reactive cells of Paramecium caudatum were fractionated for the purpose of identifying the structural component bearing mating substances. Purified axoneme fractions had no mating reactivity. The membrane fraction obtained by dialyzing against a solution of Tris-EDTA (0.1 m m EDTA, 1 m m Tris-HCI, pH 7.6) and 0.6 m KCI, and then by centrifuging over 40% (w/v) sucrose was strongly reactive. No mating reactivity was detected in the soluble fractions containing axonemal and matrix proteins. The results indicate that the mating substances in active from are localized only on the ciliary membranes.  相似文献   

18.
The Early Devonian of Podolia, Ukraine, has yielded phosphatized colonies of the boring ctenostome bryozoan Podoliapora doroshivi with 3‐D preservation of soft tissues. However, the feeding zooids are not anatomically complete, their preserved soft tissues comprising decay‐resistant structures such as the protective cuticular polypide sacs with presumed parietal muscles inside the wall of the sacs, the setigerous collars, the membranous orificial walls and remains of the muscle tissues. Early diagenetic apatite mineralization occured in numerous feeding zooids of Podoliapora at different stages of decay and may be important for the interpretation of decay processes in these colonial soft‐bodied fossil organisms. A setigerous collar, which is a characteristic of extant ctenostomes, occurs in P. doroshivi in several stages of decay showing progressive collapse and eventual complete loss. This study indicates that the morphological changes of collars induced by decay often resulted in connection with the membranous orificial wall, producing false anatomical structures, unrelated to structures observed in the earlier stages of decay or to the anatomical structures of extant ctenostomes. The most decay‐resistant cuticular polypide sacs mineralized as cryptocrystalline apatite in early stage of decay became degraded in later stages of decay. These data provide evidence that the anatomical interpretation of soft‐bodied fossils preserved only in the later stages of decay may have led to imprecise morphological interpretations.  相似文献   

19.
Abstract. SEM studies of 21 species of marine bryozoans demonstrated that the abfrontal side of the tentacles bears a row of mono- or multiciliated cells, which are presumably sensory. In stenolaemates, the abfrontal cells, as well as the cells at the tentacle tips and the laterofrontal cells, are monociliated. In the 17 gymnolaemate species studied, each tentacle tip bears at least 3 multiciliated cells, each with a tuft of 5–7 stiff cilia of various lengths. On the abfrontal tentacle surface, mono- and multiciliated cells alternate, but all species studied have multiciliated cells at the base and the tip of each tentacle. In live animals, single cilia perform occasional flicks, whereas the tufts of 7–15 cilia on the multiciliated cells are immotile. Length and number of abfrontal cilia vary between species. Two types of multiciliated, putative sensory organs were found on the introvert of some gymnolaemates. One has an apical knob surrounded by a ring of cilia; the other has an apical tuft of cilia. The ultrastructure of the sensory cells of tentacles and introvert was studied in Rhamphostomella ovata . Our observations on both fixed and living material all suggest that these cells are primitive mechanoreceptors. The few species lacking ciliary structures on the introvert have long proximal ciliary tufts on the abfrontal tentacle surface.  相似文献   

20.
Seven bryozoan species belonging to the Order Rhabdomesida and Order Cystoporida are described from the Permian deposits exposed near the small town of Deh-e Mohammad, Shotori Mountains (northeastern Iran): Rhabdomeson cf. consimile Bassler, Pamirella nitida Gorjunova, Clausotrypa conferta Bassler, Streblotrypa (Streblotrypa) elegans Sakagami, Streblotrypa (Streblascopora) supernodata nov. sp., Cystodictya sp., and Filiramoporina cf. kretaphilia Fry and Cuffey. The described fauna identifies the age of the Jamal Formation at the locality near Deh-e Mohammad as Lower Permian. It displays palaeobiogeographic connections to the Lower Permian of Pamir (Tajikistan), Indonesia, Thailand and Kansas (North America).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号