首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The hypothesis that one of the biochemical lesions underlying zinc deficiency-induced teratogenicity is altered microtubule formation was tested. Day 19 fetuses from zinc-deficient Sprague-Dawley dams were characterized by low brain supernate zinc concentrations and slow brain tubulin polymerization rates compared to controls. Brain supernate tubulin and protein concentrations were similar in zinc-deficient and control fetuses. In vitro brain tubulin polymerization rates were increased following addition of zinc to either control or zinc-deficient brain supernates; however, the stimulatory effect of added zinc on polymerization was significantly higher in brain supernates obtained from zinc-deficient fetuses compared to controls. These results support the idea that one effect of fetal zinc deficiency is a reduction in tubulin polymerization, which in turn may result in altered microtubule function.  相似文献   

2.
Prenatal and early postnatal zinc deficiency impairs learning and memory and these deficits persist into adulthood. A key modulator in this process may be the NMDA receptor; however, effects of zinc deficiency on the regulation of NMDA receptor activity are not well understood. Female Sprague-Dawley rats were fed diets containing 7 (zinc deficient, ZD), 10 (marginally zinc deficient, MZD) or 25 (control) mg Zn/g diet preconception through postnatal day (PN) 20, at which time pups were weaned onto their maternal or control diet. Regulation of NMDA receptor expression was examined at PN2, PN11, and PN65. At PN2, expression of whole brain NMDA receptor subunits NR1, NR2A, and NR2B was lower in pups from dams fed ZD and MZD compared to controls, as analyzed using relative RT-PCR and immunoblotting. At PN11, whole brain and hippocampi NR1, NR2A, NR2B and PSA-NCAM (polysialic acid-neural cell adhesion molecule) expression and the number of PSA-NCAM immunoreactive cells were lower in pups from dams fed ZD compared to controls. Whole brain brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) concentrations were lower in pups from dams fed ZD or both low zinc diets, respectively. Whole brain NR1 expression remained lower in previously zinc-deficient rats at PN65. These data indicate potential mechanisms through which developmental zinc deficiency can impair learning and memory later in life.  相似文献   

3.
To determine if prenatal zinc deficiency has a persistent effect on metallothionein (MT) regulation, Swiss-Webster mice were mated and fed a diet containing either control (100 micrograms Zn/g) or low levels of zinc (5 micrograms Zn/g) from Day 7 of gestation to parturition. After birth all mice were given the control diet. Liver zinc and MT levels were 50% lower in newborn pups from dams fed the low zinc diets than in control pups. In control pups, liver zinc and MT concentrations were relatively stable during the first week of postnatal life. In contrast, in pups prenatally deprived of zinc, liver levels of zinc and MT increased such that by Day 3 of postnatal life, the levels were not significantly different from controls. At Day 56, serum IgM concentrations were significantly lower in the low zinc offspring. Liver zinc concentrations in the two groups of mice were similar at Day 70 postnatal, and in both groups liver MT levels were below detection limits. However, when Day 70 mice were given zinc injections to stimulate MT synthesis, the prenatally zinc deprived offspring showed markedly higher liver MT levels than did control mice given similar injections, despite similar liver zinc concentrations in the two groups. These results show that prenatal zinc deficiency has pronounced effects on postnatal MT metabolism which can persist into adulthood.  相似文献   

4.
In the current study, the effects of marginal Zn deficiency on myelin protein profiles in neonatal rats and rhesus monkeys were investigated. Following mating, rats were fed a Zn-adequate diet,ad libitum (50 μg Zn/g; 50 Zn AL), or a marginal Zn diet (10 μg Zn/g) from day 0 (10 Zn d0) or day 14 (10 Zn d14) of gestation to day 20 postnatal. An additional group of dams was restricted-fed the control diet to the food intake of the 10 Zn d0 group (50 Zn RF). Day 20 pup plasma and liver Zn concentrations in the 10 Zn groups were lower than in the 50 Zn groups. In a parallel experiment, rhesus monkeys were fed a Zn-adequatead libitum diet (100 μg Zn/g) or a marginal Zn diet (4 μg Zn/g diet; MZD) throughout gestation and lactation. Day 30 monkey infant plasma and liver Zn levels were similar in the MZD and control groups. Rat brain and monkey brain cortex weights were similar among the dietary groups. The amount of myelin recovered (mg protein/g brain) from day 20 rat pups from the 10 Zn groups was lower than that recovered from the 50 Zn rat pups. Myelin recovery from the MZD and control monkey infants was similar. When myelin protein profiles were characterized, it was found that the percentages of high-molecular-weight (HMW) proteins and Wolfgram protein were higher, whereas the percentages of small and large basic proteins were lower in myelin from the 10 Zn d0 and 50 Zn RF pups compared to the distribution in the 50 Zn AL rat pups. Results for the 10 Zn d0 and 10 Zn d14 pups were similar for all of the parameters studied. The percentage of HMW proteins was higher and that of basic protein lower in myelin from MZD monkey infants compared to the percentage of these proteins in myelin from controls. Although the interpretation of the rat data is complicated because of the anorexia associated with the Zn deficiency, the observed changes in monkey myelin protein profiles provide strong evidence that maternal Zn deficiency affects myelination in the offspring.  相似文献   

5.
Effect of dietary iron deficiency on mineral levels in tissues of rats   总被引:3,自引:0,他引:3  
To clarify the influence of iron deficiency on mineral status, the following two synthetic diets were fed to male Wistar rats: a control diet containing 128 micrograms iron/g, and an iron-deficient diet containing 5.9 micrograms iron/g. The rats fed the iron-deficient diet showed pale red conjunctiva and less reactiveness than the rats fed the control diet. The hemoglobin concentration and hematocrit of the rats fed the iron-deficient diet were markedly less than the rats fed the control diet. The changes of mineral concentrations observed in tissues of the rats fed the iron-deficient diet, as compared with the rats fed the control diet, are summarized as follows: . Iron concentrations in blood, brain, lung, heart, liver, spleen, kidney, testis, femoral muscle, and tibia decreased; . Calcium concentrations in blood and liver increased; calcium concentration in lung decreased; . Magnesium concentration in blood increased; . Copper concentrations in blood, liver, spleen and tibia increased; copper concentration in femoral muscle decreased; . Zinc concentration in blood decreased; . Manganese concentrations in brain, heart, kidney, testis, femoral muscle and tibia increased. These results suggest that iron deficiency affects mineral status (iron, calcium, magnesium, copper, zinc, and manganese) in rats.  相似文献   

6.
The purpose of this study was threefold: 1. to determine the long-term effects of interactions between lactational zinc deficiency and gender on bone mineral composition in repleted rat offspring, 2. to determine the nutritional efficacy of the second of two commercially designed, modified Luecke diets (ML2) during the gestational and lactational stress, and 3. determine the ultratrace element contents of Ralston Rodent Laboratory Chow #5001. The ML2 basal diet, based on dextrose, sprayed egg white, and corn oil contained 0.420 μg Zn/g, was supplemented with Zn (as zinc acetate) at 0 (diet 0ML2) or 30 (diet 30ML2) μg/g, and was mixed and pelleted commercially. all rat dams were fed the 30ML2 diet ad libitum during gestation. Beginning at parturition, the dams were fed either the 1. 0ML2, 2. 30ML2 (food restricted), or 3. 30ML2 (ad libitum) diets. All pups were fed the 30ML2 diet ad libitum from 23 to 40 d of age. From d 40 to 150, all pups were fed Ralston Rodent Laboratory Chow. The 30ML2 diet was found to be nutritionally efficacious; litter size and pup growth were normal and pup mortality was only 1.2%. Pups (ZD) with access to the 0ML2 diet until 23 d of age and nursed by dams fed the 0ML2 diet, when compared to pups (PF) fed restricted amounts of the 30ML2 diet, exhibited increased mortality and decreased concentrations of tibial zinc but no change in growth. Inadequate zinc nutriture during infancy, despite postlactational zinc repletion, induced imbalances in adult bone mineral metabolism. Thus, at 150 d of age, the ZD pups exhibited increased levels of bone P and Mg and decreased concentrations of K as compared to the PF pups.  相似文献   

7.
Clonal cells (N18) of the mouse neuroblastoma C-1300 can be induced to undergo a morphological differentiation characterized by the outgrowth of very long neurites (> 150 microns) that contain many microtubules. Because the marked increase in the number and length of microtubules is apparently not due to an increase in the concentration of tubulin subunits, the possible role of additional macromolecules in the regulation of tubulin polymerization during neurite formation by N18 cells was examined. Using an in vitro system where the polymerization of low concentrations (< 4 mg/ml) of purified brain tubulin requires microtubule-associated proteins (MAPs), high-speed supernates (250,000 g) from neuroblastoma and glioma cells were assayed for their ability to replace MAPs in the polymerization of brain tubulin. Only the supernates from "differentiated" N18 cells were polymerization competent. Electron microscope observations of these supernates failed to demonstrate the presence of nucleation structures (rings or disks). The active factor(s) sedimented at approximately 7S on sucrose gradient centrifugation and eluted from 4B Sepharose in the region of 170,000 mol wt proteins. Furthermore, the inactive supernates from other cells did not inhibit polymerization when tested in the presence of limiting MAPs. Thus, microtubule formation accompanying neurite outgrowth in neuroblastoma cells appears to be regulated by the presence of additional macromolecular factor(s) that may be functionally equivalent to the MAPs found with brain microtubules.  相似文献   

8.
9.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

10.
Studies were made of the effects of maternal thiamine deficiency on rat whole brain, gray matter and white matter lipids. Mothers were fed a high protein diet (controls) or thiamine deficient high protein diet (thiamine deficient, TD) from 14th day of gestation through lactation. An additional group (pair fed control, PFC) was pair fed with the thiamine deficient group. The TD pups started showing symptoms of abnormalities in posture, arched back and hind limb paralysis from 16th day of lactation. Significant deficits were found in body weight and brain weight of TD and PFC pups. But the deficits seem to be more in the former group. Significant deficits were observed with regard to the concentration of lipids such as galactolipids, phospholipids and plasmalogens in the whole brain of TD and PFC pups at 21 days of age. Additional deficits were also found in the concentration of cholesterol in PFC pups. Gray matter lipids from TD pups seem to be completely spared. However, deficits were found in galactolipid and ganglioside concentrations in PFC pups. The deficits found in the concentration of different lipids in white matter are similar to those observed in whole brain. These results suggest that the effects of thiamine deficiency may be partly due to resultant growth retardation and partly due to the deficiency of thiamine per se.  相似文献   

11.
膳食锌对小鼠脑组织微管相关蛋白2表达的影响   总被引:1,自引:0,他引:1  
Wang FD  Zhao FJ  Jing NH 《生理学报》1999,51(5):495-500
本工作观察了膳食锌与脑组织微管相关蛋白2(MAP2)之间的联系,并探讨了微量元素锌调节微管聚合作用的可能机制。ICR初孕小鼠80 孕期和哺乳局喂不同锌水平饲料,随机分为5组:严重缺锌组,轻度缺锌组,轻度缺锌组,适锌组,高锌对喂组及高锌组,它们饲料的锌水平分别为1,5,30,100和100mg/kg。  相似文献   

12.
The toxic effect of vanadium (sodium metavanadate) during pregnancy and lactation was studied by feeding vanadium to pregnant, Sprague-Dawley rats at levels of 1 (control) or 75 μg V/g diet through d 21 postpartum, at which time they were killed. Vanadium-fed dams had lower food intakes and weight gains than controls during pregnancy. Survival until d 21 postpartum was significantly lower in the vanadium pups compared to controls. In addition, the surviving pups gained less weight than control pups, despite similar birth weights. On a relative body weight basis, vanadium pups had larger livers, brains, and testes than controls, suggesting that these animals were developmentally delayed. Vanadium dams and pups had higher concentrations of hepatic vanadium than controls. Vanadium pups also had higher concentrations of hepatic zinc than control pups. Maternal hepatic zinc concentrations were not affected by diet. Also, no significant differences in hepatic iron, copper, or manganese concentrations were observed for either dams or pups. Hepatic thiobarbituric acid reactivity was higher in whole cell and isolated mitochondria for vanadium dams and pups than for control dams and pups, indicating that these animals may have had higher levels of lipid peroxidation. This idea was supported by the observation of lower concentrations of reduced glutathione in the livers of vanadium pups compared to controls. In contrast, kidney and brain glutathione levels were not affected by diet. In conclusion, animals during periods of rapid growth are susceptible to vanadium toxicity, and increased lipid peroxidation may be one factor underlying this toxicity.  相似文献   

13.
To examine whether zinc deficiency would increase the toxicity of dietary aluminum, weanling, male Sprague-Dawley rats were fed purified diets containing either 2 or 30 mg Zn/kg diet, with or without 500 mg Al/kg diet for 28 d. Individually pair-fed rats were fed the 30 mg Zn/kg diet with or without added aluminum to control for inanition secondary to zinc deficiency. Rats fed the 2 μg Zn/kg diet showed evidence of zinc deficiency, including anorexia, growth retardation, and depressed concentrations of zinc in tibias and livers. Zinc deficiency did not significantly increase the concentrations of aluminum in the tibias, livers, kidneys, or regions of the brain examined (cerebrum, cerebellum, midbrain, and hippocampus). Inclusion of aluminum in the diet did not alter aluminum concentrations in the various tissues. Under the conditions of this study, zinc deficiency did not result in greater sensitivity to dietary aluminum exposure.  相似文献   

14.
The hypothesis that the secretion of gonadotrophins would be reduced by zinc deficiency was tested in five groups of four young Merino rams (initial liveweight 22 kg). Four groups were fed ad libitum with diets containing 4, 10, 17 or 27 micrograms Zn g-1. The effects of loss of appetite on the deficient diet was controlled by feeding a fifth group (pair-fed control) at a rate of 27 micrograms Zn g-1, but the amount of feed offered was restricted to that eaten voluntarily by the deficient (4 micrograms Zn g-1) group. Blood was sampled every 20 min for 32 h on two occasions before the treatments were imposed and 96 days later, at the end of the experiment. The rams were injected with gonadotrophin-releasing hormone (GnRH; 10 ng kg-1 i.v.) after each serial sampling, and with naloxone (1 mg kg-1 i.v.) 24 h after the end of the final GnRH test. In the group that were fed the diet with the lowest zinc content, the concentration of zinc in blood plasma was reduced to 18% of that in the pair-fed controls (P < 0.05) and was within the deficient range. The appetite of the deficient rams was half that of the controls fed 27 micrograms Zn g-1 ad libitum and there was no increase in liveweight or testicular diameter during pubertal development. Similar, but smaller, effects were observed in the pair-fed controls. There were no significant differences between pair-fed and deficient groups in the frequency of the luteinizing hormone (LH) pulses or in the concentration of follicle-stimulating hormone (FSH), but the secretion of gonadotrophins was markedly lower in both groups than in the control rams fed ad libitum. The response to GnRH was not affected by treatment, but the increase in LH pulse frequency evoked by naloxone was lower in the deficient animals than in other groups. The animals fed zinc at intermediate rates (10-17 micrograms g-1) showed similar responses to the controls fed ad libitum. It is concluded that the specific effects of zinc deficiency on testicular function were small. Most of the reduction in testicular growth in rams fed a deficient diet was not specifically related to the trace element, but was due to the fall in energy and protein intake caused by the loss of appetite. This leads to a reduction in the frequency of GnRH pulses secreted by the hypothalamus, and to low rates of gonadotrophin secretion by the pituitary gland.  相似文献   

15.
Dietary zinc deficiency decreases plasma concentrations of vitamin E   总被引:1,自引:0,他引:1  
Experiments were conducted to examine the effects of dietary zinc (Zn) upon plasma vitamin E (E) concentrations to test the hypothesis that there may be a significant dietary interaction between these two nutrients. Weanling female Sprague-Dawley rats were fed diets that were (i) Zn-deficient (less than 0.9 micrograms Zn/g diet) ad libitum; (ii) Zn-adequate (50.9 micrograms Zn/g diet), pair-fed to the Zn-deficient group; and (iii) Zn-adequate (50.9 micrograms Zn/g diet) ad libitum. Plasma E in Zn-deficient animals (4.02 +/- 1.20 micrograms/ml) was significantly reduced (P less than or equal to 0.05) compared with results in both Zn-adequate pair-fed (9.21 +/- 0.70 micrograms/ml) and Zn-adequate ad libitum-fed (9.47 +/- 0.90 micrograms/ml) animals. Zn deficiency in this model system also resulted in significant (P less than or equal to 0.05) reductions in femur and plasma Zn concentrations as well as in plasma retinol, plasma triglyceride, and plasma cholesterol concentrations. Plasma albumin and total plasma protein concentrations were normal in Zn-deficient animals. With dietary Zn deficiency, the decrease in plasma E appeared to be out of proportion to associated decreases in plasma triglyceride and plasma cholesterol concentrations. Since E is associated with plasma lipoproteins, these data suggest that lipid and/or E malabsorption may be a consequence of Zn deficiency. In response to increased dietary intake of E, increments of plasma E were lower in Zn-depleted than in Zn-adequate, pair-fed animals. These findings suggest that dietary Zn deficiency possibly may increase the nutritional requirement for E necessary to maintain adequate plasma concentrations.  相似文献   

16.
Clinical and biochemical evidence of vitamin A deficiency was produced in rabbits as early as 4-5 weeks after weaning to a vitamin A deficient diet from dams maintained during lactation on the deficient diet. Mean serum retinol levels at the time of weaning for the deficient dams were 25 +/- 6 micrograms/dl compared with 74 +/- 8 micrograms/dl for the controls. Five weeks after weaning, 25% of pups fed the vitamin A deficient diet had ocular lesions characterized by the accumulation of sloughed epithelium on the cornea. At this time, mean serum values of the pups were 10 +/- 4 micrograms/dl for the deficient group and 73 +/- 8 micrograms/dl for the controls. Evidence of critically depleted liver stores was documented in the deficient rabbits by an elevated relative dose response test (54 +/- 18%) that did not occur in the control group (6 +/- 5%). Although food consumption was similar, weight gain was lower in the deficient group when compared to the control group.  相似文献   

17.
Inadequate iron nutrition is thought to affect many aspects of brain development. Iron is a component of enzyme systems in DNA synthesis, the respiratory chain, neurotransmitter and lipid metabolism. The iron content of the striatum increases post-natally, with neuronal differentiation, myelin lipid and receptor formation: Seventy percent of the iron in the brain is associated with myelin. In an attempt to dissociate the global effects of under-and/or malnutrition and to produce exclusively an iron deficiency, we have used the gastrostomy-reared rat pup fed milk substitutes which vary only in their iron content. To ensure the pups did not have adequate iron reserves at birth, dams were fed a meal diet of low iron content (3 ppm) throughout gestation. The pups were then artificially reared on milk with (43 ppm), and without added iron (2.5 ppm) from 6 up to 21 days after birth. At 21 days of age, body weights of iron deficient pups were about 90% those of control animals. At 21 days of age, the pups were weaned, then fed standard laboratory rat chow. Brain was examined at 42 days of age (for young adults) and up to 6 months of age (180 days as mature adults). Morphometric analysis of sagittal sections of the cerebellum at 21 and 63 days of age revealed a deficit in white matter formation in pups fed low-iron at 21 days of age when compared to controls. This deficit was partially recouped by age 63 days. By contrast, animals fed milk supplemented with iron showed greater definition in white matter formation than controls at 21 days of age; indicative of precocious maturation of the white matter tracts. Our findings indicate that iron deficiency, without under/mal-nutrition and other variables, does not result in extensive growth deficits in body and brain weight. However, the iron status profoundly influences the development of myelination in that the process is delayed in iron deficiency.  相似文献   

18.
M Mori  J F Wilber  T Nakamoto 《Life sciences》1983,32(14):1607-1612
Liquid protein diet (LPD) has been shown previously to produce maternal and fetal weight loss and fetal congenital anomalies, including cataracts and craniofacial malformations. Therefore, to examine the effects of LPD in pregnancy upon the central nervous system of pups, pregnant dams were fed either a 20% casein diet ad libitum, a 20% LPD, or pair-fed with a 20% casein diet. LPD was associated with significant maternal weight loss, and pups had significantly lower birth weights (5.14 +/- 0.64) than pups from the pair-fed controls (5.70 +/- 0.46, p less than 0.05). Total brain protein content was reduced significantly in pups of both sexes from pregnant fed LPD. Moreover, the concentrations of two brain peptides neurotransmitters, thyrotropin-releasing hormone (TRH), and its biologically active metabolite, histidyl-proline diketopiperazine Cyclo (His-Pro), were elevated in the pups from LPD-fed mothers. In contrast, there was no significant difference in brain protein or brain peptides in pups from pair-fed mothers vs. pups from mothers fed ad libitum. These data suggest that qualitative alterations of the protein component in maternal dietary composition have deleterious effects upon the ontogeny of the rat fetal CNS, as reflected by reduced total protein and elevated concentrations of TRH and Cyclo (His-Pro).  相似文献   

19.
In rats, zinc deficiency has been reported to result in elevated hepatic methionine synthase activity and alterations in folate metabolism. We investigated the effect of zinc deficiency on plasma homocysteine concentrations and the distribution of hepatic folates. Weanling male rats were fed ad libitum a zinc-sufficient control diet (382.0 nmol zinc/g diet), a low-zinc diet (7.5 nmol zinc/g diet), or a control diet pair-fed to the intake of the zinc-deficient rats. After 6 weeks, the body weights of the zinc-deficient and pair-fed control groups were lower than those of controls, and plasma zinc concentrations were lowest in the zinc-deficient group. Plasma homocysteine concentrations in the zinc-deficient group (2.3 +/- 0.2 micromol/L) were significantly lower than those in the ad libitum-fed and pair-fed control groups (6.7 +/- 0.5 and 3.2 +/- 0.4 micromol/L, respectively). Hepatic methionine synthase activity in the zinc-deficient group was higher than in the other two groups. Low mean percentage of 5-methyltetrahydrofolate in total hepatic folates and low plasma folate concentration were observed in the zinc-deficient group compared with the ad libitum-fed and pair-fed control groups. The reduced plasma homocysteine and folate concentrations and reduced percentage of hepatic 5-methyltetrahydrofolate are probably secondary to the increased activity of hepatic methionine synthase in zinc deficiency.  相似文献   

20.
The effect of zinc deficiency on calmodulin function was investigated by assessing the in vivo activity of two calmodulin regulated enzymes, adenosine 3′,5′-monophosphate (c-AMP) and guanosine 3′,5′-monophosphate (c-GMP) phosphodiesterase (PDE) in several rat tissues. Enzymatic activities in brain, heart, and testis of rats fed a zinc deficient diet were compared with activities in these tissues from pair fed, zinc supplemented rats. In testis, a tissue in which zinc concentration decreased with zinc deficient diet, enzyme activities were significantly decreased over those in rats who were pair fed zinc supplemented diets. In brain and heart, tissues in which zinc concentrations did not change with either diet, enzymatic activities between the groups were not different. These results indicate that zinc deficiency influences the activity of calmodulin-regulated phosphodiesterases in vivo supporting the hypothesis that zinc plays a role in calmodulin function in vivo in zinc sensitive tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号