首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gekko swinhonis Gūenther has been used as an anti-cancer drug in traditional Chinese medicine. Gekko sulfated polysaccharide (Gepsin) was investigated for its activity in hepatocellular carcinoma. Hepatocarcinoma cell line (Bel-7402) and liver cell line (L-02) were exposed to Gepsin (100 microg/ml and 10 microg/ml). Gepsin did not suppress the proliferation and viability of normal liver L-02 cells, but strongly inhibited the proliferation of hepatocarcinoma Bel-7402 cells. Gepsin did not induce the apoptosis of Bel-7402 cells, but blocked cells in G2/M phase. Treated with Gepsin, Bel-7402 cells showed ultrastructural features of differentiation. AFP secretion decreased while ALB secretion increased markedly on Gepsin-treated cells. The data show that Gepsin suppressed the proliferation and induced differentiation of hepatocarcinoma, but the toxicity to normal liver cells was negligible.  相似文献   

2.
Luteolin-7-O-glucoside (LUT7G), a flavone subclass of flavonoids, has been found to increase anti-oxidant and anti-inflammatory activity, as well as cytotoxic effects. However, the mechanism of how LUT7G induces apoptosis and regulates cell cycles remains poorly understood. In this study, we examined the effects of LUT7G on the growth inhibition of tumors, cell cycle arrest, induction of ROS generation, and the involved signaling pathway in human hepatocarcinoma HepG2 cells. The proliferation of HepG2 cells was decreased by LUT7G in a dose-dependent manner. The growth inhibition was due primarily to the G2/M phase arrest and ROS generation. Moreover, the phosphorylation of JNK was increased by LUT7G. These results suggest that the anti-proliferative effect of LUT7G on HepG2 is associated with G2/M phase cell cycle arrest by JNK activation. [BMB Reports 2013; 46(12): 611-616]  相似文献   

3.
The antitumor activity of intracellular polysaccharides from submerged fermentation of Ganoderma lucidum was investigated focusing on the inhibition on human liver cancer cells. The polysaccharides inhibited human hepatocarcinoma cell HepG2 during earlier phase with lower dosage but obviously became less functional in later phase regardless of the dosage applied. However, apoptosis of the drugged HepG2 cells appeared in later incubation phase with high dosage, and the apoptosis could be enhanced by supplemental dose of the intracellular polysaccharides. Nevertheless, the intracellular polysaccharides inhibited other human hepatocarcinoma cells such as BEL-7402 and Huh-7 but luckily stimulated human normal liver cell L02 only in a positive dose- and time-dependent manner; so did the sulfated extracellular polysaccharides when it inhibited HepG2 and L02 cells. However, the toxicity of sulfated extracellular polysaccharides to L02 cells can be eliminated by the intracellular polysaccharides.  相似文献   

4.
The high biological activity of dehydroabietylamine derivatives has been reported previously. In this study, we aimed to screen 73 dehydroabietylamine derivatives as potential candidate inhibitors in liver cancer cells. Initially, the compounds structural activity relationship analysis was explored and N-benzoyl-12-nitrodehydroabietylamine-7-one (compound 81) was shown to have significant growth inhibitory activity in the human liver carcinoma cell line, HepG2. Further research into the anti-proliferative effect on HepG2 cells mediated by compound 81 was undertaken. The results suggest that compound 81 effectively induced apoptosis in HepG2 cells characterized by nuclear staining of DAPI, TUNEL assay and the activation of caspase-3. A decreased level of anti-apoptotic protein Bcl-2 and increased apoptotic Bax were also observed. Furthermore, Ki-67 protein staining and the BrdU incorporation assay showed that compound 81 significantly inhibited the proliferation of HepG2 cells. Cell cycle components analysis found that expression of cyclin D1 and cyclin B1 was reduced in HepG2 cells with compound 81 treatment, whereas the content of p21(Waf1/Cip1) was increased. Taken together, our data indicate that compound 81 induces apoptosis and inhibits proliferation in HepG2 cells, and may be a promising candidate in the development of a novel class of antitumor agents.  相似文献   

5.
研究抑制泛素特异性蛋白酶9X(ubiquitin-specific protease 9X,USP9X)对人肝癌(primary hepatocellular carcinoma,HCC)细胞SMMC7721和HepG2中髓细胞白血病-1(myeloid cell leukemia-1,Mcl-1)蛋白的表达调控及对细胞凋亡和生长活力的影响。实验分为USP9X-siRNA组和阴性对照NC组两组进行分析。通过Western blot技术分别检测USP9X在肝癌细胞SMMC7721、HepG2和正常人肝细胞株L02中的蛋白表达情况;应用化学合成USP9X-siRNA转染肝癌细胞SMMC7721和HepG2,通过Western blot、流式细胞仪和MTT检测转染前后Mcl-1的蛋白表达差异以及细胞凋亡和生长活力变化。结果表明,USP9X在肝癌细胞SMMC7721和HepG2中的蛋白表达水平均高于正常肝细胞L02(t=15.155,P=0.000;t=9.171,P=0.001);SMMC7721和HepG2细胞中抑制USP9X能明显下调Mcl-1的蛋白表达,并导致细胞凋亡增加和生长活力降低。提示,肝癌细胞SMMC7721和HepG2中USP9X表达上调;USP9X表达降低可能通过下调Mcl-1的蛋白表达进而诱导人肝癌细胞SMMC7721和HepG2的凋亡。  相似文献   

6.
Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma.  相似文献   

7.
Accumulation of saturated fatty acids in the liver can cause nonalcoholic fatty liver disease (NAFLD). This study investigated saturated fatty acid induction of endoplasmic reticulum (ER) stress and apoptosis in human liver cells and the underlying causal mechanism. Human liver L02 and HepG2 cell lines were exposed to the saturated fatty acid sodium palmitate. MTT assay was used for cell viability, flow cytometry and Hoechst 33258 staining for apoptosis, RT-PCR for mRNA expression, and Western blot for protein expression. Silence of PRK-like ER kinase (PERK) expression in liver cells was through transient transfection of PERK shRNA. Treatment of L02 and HepG2 cells with sodium palmitate reduced cell viability through induction of apoptosis. Sodium palmitate also induced ER stress in the cells, indicated by upregulation of PERK phosphorylation and expression of BiP, ATF4, and CHOP proteins. Sodium palmitate had little effect on activating XBP-1, a common target of the other two canonical sensors of ER stress, ATF6, and IRE1. Knockdown of PERK gene expression suppressed the PERK/ATF4/CHOP signaling pathway during sodium palmitate-induced ER stress and significantly inhibited sodium palmitate-induced apoptosis in L02 and HepG2 cells. Saturated fatty acid-induced ER stress and apoptosis in these human liver cells were enacted through the PERK/ATF4/CHOP signaling pathway. Future study is warranted to investigate the role of these proteins in mediating saturated fatty acid-induced NAFLD in animal models.  相似文献   

8.
Juglanthraquinone C (1,5-dihydroxy-9,10-anthraquinone-3-carboxylic acid, JC), a naturally occurring anthraquinone isolated from the stem bark of Juglans mandshurica, shows strong cytotoxicity in various human cancer cells in vitro. Here, we first performed a structure-activity relationship study of six anthraquinone compounds (JC, rhein, emodin, aloe-emodin, physcion and chrysophanol) to exploit the relationship between their structural features and activity. The results showed that JC exhibited the strongest cytotoxicity of all compounds evaluated. Next, we used JC to treat several human cancer cell lines and found that JC showed an inhibitory effect on cell viability in dose-dependent (2.5-10 μg/ml JC) and time-dependent (24-48 h) manners. Importantly, the inhibitory effect of JC on HepG2 (human hepatocellular carcinoma) cells was more significant as shown by an IC(50) value of 9 ± 1.4 μg/ml, and 36 ± 1.2 μg/ml in L02 (human normal liver) cells. Further study suggested that JC-induced inhibition HepG2 cell proliferation was associated with S phase arrest, decreased protein expression of proliferation marker Ki67, cyclin A and cyclin-dependent kinase (CDK) 2, and increased expression of cyclin E and CDK inhibitory protein Cip1/p21. In addition, JC significantly triggered apoptosis in HepG2 cells, which was characterized by increased chromatin condensation and DNA fragmentation, activation of caspase-9 and -3, and induction of a higher Bax/Bcl2 ratio. Collectively, our study demonstrated that JC can efficiently inhibit proliferation and induce apoptosis in HepG2 cells.  相似文献   

9.
The results presented herein show that at clinically relevant concentrations (0–30 µM), the well-tolerated phytochemical berberine (BER) induces cell death in cultured human hepatocarcinoma (HepG2) cells as a model for liver cancer, primarily via apoptosis. Similar, relatively low-concentration single treatments using the structurally related phytochemical resveratrol (RSV), had little or no effect on cell viability but inhibited the cell cycle, while simultaneously increasing the strength of cellular adhesion. When used in combination, an RSV/BER cotreatment appeared to retain the ability of a single RSV treatment to increase cellular adhesion, but also induced a massive loss in hepatocarcinoma cellular viability, inducing cell death in more than 90% of cells. This model, therefore, suggests that it may be possible to use RSV to stabilise hepatocarcinomas against metastasis while using cotreatment with BER to simultaneously induce cell death. By measuring the changes in the activity of the pleiotropic enzyme transglutaminase 2 (TGM2), which is known to be overexpressed in hepatocarcinoma and many other tumours, we hypothesise a role for this enzyme in the activities of these two phytochemicals, and propose the potential use of this RSV/BER cotreatment as a chemotherapeutic in TGM2+ hepatocarcinomas.  相似文献   

10.
Matrine is a natural alkaloid isolated from the root and stem of the legume plant Sophora. Its anti-proliferative and pro-apoptotic effects on several types of cancer have been well-documented. However, the role of matrine in regulating mitochondrial homeostasis, particularly mitophagy in liver cancer apoptosis, remains uncertain. The aim of our study was to explore whether matrine promotes liver cancer cell apoptosis by modifying mitophagy. HepG2 cells were used in the study and treated with different doses of matrine. Cell viability and apoptosis were determined by MTT assay, TUNEL staining, western blotting, and LDH release assay. Mitophagy was monitored by immunofluorescence assay and western blotting. Mitochondrial function was assessed by immunofluorescence assay, ELISA, and western blotting. The results of our study indicated that matrine treatment dose-dependently reduced cell viability and increased the apoptotic rate of HepG2 cells. Functional studies demonstrated that matrine treatment induced mitochondrial dysfunction and activated mitochondrial apoptosis by inhibiting protective mitophagy. Re-activation of mitophagy abolished the pro-apoptotic effects of matrine on HepG2 cells. Molecular investigations further confirmed that matrine regulated mitophagy via the PINK1/Parkin pathways. Matrine blocked the PINK1/Parkin pathways and repressed mitophagy, whereas activation of the PINK1/Parkin pathways increased mitophagy activity and promoted HepG2 cell survival in the presence of matrine. Together, our data indicated that matrine promoted HepG2 cell apoptosis through a novel mechanism that acted via inhibiting mitophagy and the PINK1/Parkin pathways. This finding provides new insight into the molecular mechanism of matrine for treating liver cancer and offers a potential target to repress liver cancer progression by modulating mitophagy and the PINK1/Parkin pathways.  相似文献   

11.
The first series of nitric oxide donating derivatives of evodiamine were designed and prepared. NO releasing ability of all target derivatives was evaluated in BGC-823, Bel-7402 and L-02 cells. The cytotoxicity was evaluated against three human tumor cell lines (Bel-7402, A549 and BGC-823) and normal human liver cells L-02. The nitrate derivatives 11a and 11b only exhibited moderate activity and furoxan-based derivatives 13ac, 14a and 14b showed promising activity. 13c showed good cytotoxic selectivity between tumor and normal liver cells and was further investigated for its apoptotic properties on human hepatocarcinoma Bel-7402 cells. The molecular mode of action revealed that 13c caused cell-cycle arrest at S phase and induced apoptosis in Bel-7402 cells through mitochondria-related caspase-dependent pathways.  相似文献   

12.
目的:利用CRISPR/Cas9基因编辑技术构建生物节律基因NPAS2敲除的HepG2肝癌细胞系,并初步探讨NPAS2基因敲除对肝癌细胞凋亡的影响。方法:利用sgRNA在线设计工具,针对NPAS2设计两条sgRNA;利用PX459质粒构建分别含有两条sgRNA的敲除载体PX459-sgRNA1;PX459-sgRNA2;利用T7核酸内切酶I检测两条sgRNA活性;将活性较高的打靶载体瞬时转染HepG2细胞,经过药物筛选,克隆化培养及基因测序后得到NPAS2敲除的HepG2肝癌细胞系;利用Western blot检测NPAS2蛋白的表达和凋亡相关蛋白Caspase3的活化;利用流式细胞仪检测敲除细胞系的凋亡水平。结果:成功构建了针对NPAS2的打靶载体;并筛选得到了活性较高的打靶载体;经过药物筛选和克隆化培养得到的NPAS2敲除肝癌细胞系未检测到NPAS2蛋白的表达;进一步发现NPAS2敲除的肝癌细胞Caspase3明显活化,凋亡水平显著升高。结论:利用CRISPR/Cas9基因编辑技术成功构建了NPAS2基因敲除的HepG2肝癌细胞系,并发现NPAS2敲除可以促进肝癌细胞凋亡,为进一步研究生物节律基因NPAS2及其它相关基因在肝癌发生发展中的作用机制提供了有力的工具。  相似文献   

13.
Cocoa tea (Camellia ptilophylla), a naturally decaffeinated tea commonly consumed as a healthy beverage in southern China, has been recently found to be a potential candidate for the treatment of different diseases, including obesity and cancers. The present study aimed to evaluate the anti-liver cancer activities of green cocoa tea infusion (GCTI) in vitro and in vivo using human hepatocarcinoma cell line HepG2 cells and nude mice xenograft model. The apoptotic activities of GCTI were assessed using flow cytometry, Western blotting and immunohistochemical analysis. Our results showed that GCTI significantly inhibited the proliferation of HepG2 cells in a dose-dependent manner (IC(50) values=292 μg/ml at 72 h). GCTI induced HepG2 cells to undergo apoptosis, which was demonstrated by cell cycle analysis and annexin-V and propidium iodide staining. The caspase cascade was activated as shown by significant proteolytic cleavage of caspase-3 and PARP in GCTI-treated cells in a dose- and time-dependent manner. In addition, GCTI increased the expression of cell cycle inhibitory proteins (p21, p27 and p53) and the Bax-to-Bcl-2 ratio to induce apoptosis. The antiproliferative effect of GCTI was confirmed in HepG2 xenograft nude mice. The tumor growth was effectively inhibited by GCTI in a dose-dependent manner as indicated by the decrease in tumor volume and tumor weight after 4 weeks of treatment. Administration of GCTI increased terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and caspase-3-positive cells in the tumor section. In conclusion, these results revealed that GCTI may be a potential and promising agent of natural resource to treat liver cancer.  相似文献   

14.
目的:探讨三氧化二砷与氨氯地平单独用药及联合用药对肝癌Hep G2细胞增殖和凋亡的作用。方法:用不同浓度的三氧化二砷(4.0、2.0、1.0μmol/L)和氨氯地平(27×103、18×103、12×103 mg/m L)处理体外培养的人肝癌Hep G-2细胞,观察细胞形态的变化,采用CCK-8法检测两种药物单独及联合应用对Hep G-2细胞生长增殖的影响,并通过流式细胞术观察其对细胞凋亡及细胞周期的影响。结果:三氧化二砷和氨氯地平均可以浓度依赖性方式显著增加Hep G2细胞的生长抑制率及其凋亡率,以联合用药的作用较单独用药更显著(P0.05)。与三氧化二砷和氨氯地平单独用药相比,联合用药可显著阻滞Hep G2细胞于G2期及S期。结论:三氧化二砷和氨氯地平均可显著抑制人肝癌Hep G2细胞的生长和增殖,并促进其凋亡,且二者联合应用时具有协同作用。  相似文献   

15.
T J Holmes  K D Rainsford 《Life sciences》2001,69(25-26):2975-2992
Many nongenotoxic carcinogen's (ngc) produce hyperplastic lesions from which neoplastic foci may arise. Modulation of the rate of apoptosis by some ngc's within these lesions may be critical to their mechanism of tumour promotion but some may be cytotoxic. To establish if these compounds are apoptotic or necrotic in vitro, three ngc's (12-0-tetradecanoyl phorbol-13-acetate (TPA); nickel, and di(2-ethylhexyl-phthalate (DEHP), two noncarcinogenic hepatoproliferating agents (1,4-dichlorobenzene (DCB; HGF) and an in vitro genotoxic reference compound (7-hydroxy-2-acetylaminofluorene (70H2AAF) were used to induce mitogenic or growth responses in two liver cell-lines HepG2 and JTC-15. MTT and 3H-thymidine incorporation assays were used to measure cell growth and DNA replicative activity respectively. Rates of apoptosis were assayed using FITC-annexin V with propidium iodide staining and flow cytometry. Responses in HepG2 cells were HGF (proliferation at > or = 3 ng/ml), TPA (cell growth at > or = 8 ng/ml), DEHP (proliferation at > or = 0.05 microg/ml). NiCl2 and 70H-2AAF were cytotoxic above 0.001 microg/ml and 100 ng/ml respectively. An equivocal result was obtained for DCB. Responses in JTC-15 cells were HGF (proliferation, 3 ng/ml), TPA (DNA replication, 10 ng/ml), and DEHP (cell mass, 2.5 microl/ml). NiCl2 and 70H-2AAF were cytotoxic above 0.01 microg/ml and 110 mg/ml respectively. Equivocal results were obtained for DCB. In flow cytometry assays apoptotic and necrotic populations were not clearly separable. Approximate rates of apoptosis in HepG2 were: control 8.7%; DEHP, 10.19%. NiCl2, 12.67%; 70H2AAF, 16.56%; TPA, 19.72%; HGF, 23.73%; DCB, 24.59%; positive apoptotic control (taxol) 26.94%. These data show apoptosis was increased in chemically activated populations of HepG2. The ngc, DEHP, unexpectedtly produced proliferation in HepG2 and almost totally suppressed apoptosis in vitro in HepG2 relative to the non-carcinogenic hepatoproliferators. The rate of apoptosis induced by the ngc TPA was not considered to be sufficiently different to the rates of apoptosis induced by the noncarcinogenic hepatoproliferators. The results emphasize the importance of considering necrotic reactions from effects on apoptosis in detecting non-genotoxic carcinogens.  相似文献   

16.
A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.  相似文献   

17.
李胜昔  曾斌  石巍  廖爱军  曹文涛 《生物磁学》2011,(14):2658-2660
目的:探讨姜黄素对肝癌HepG2细胞抗癌作用及相关周期蛋白依赖激酶抑制因子P21WAF1/CIP1表达的影响。方法:体外培养肝癌HepG2细胞,用MTT法检测姜黄素对HepG2细胞的抑制作用,以RT-PCR方法检测HepG2细胞中P21WAF1/CIP1mRNA的表达,用免疫细胞化学检测其P21WAF1/CIP1蛋白的表达。结果:姜黄素呈时间剂量性抑制HepG2细胞的生长,并显著上调HepG2细胞中P21WAF1/CIP1mRNA和蛋白的表达。结论:姜黄素能抑制HepG2细胞的生长,并上调其中P21WAF1/CIP1的表达。  相似文献   

18.
Panaxydol, a polyacetylene compound isolated from Panax ginseng, exerts anti-proliferative effects against malignant cells. No previous study, however, has been reported on its effects on hepatocellular carcinoma cells. Here, we investigated the effects of panaxydol on the proliferation and differentiation of human hepatocarcinoma cell line HepG2. We studied by electronic microscopy of morphological and ultrastructural changes induced by panaxydol. We also examined the cytotoxicities of panaxydol against HepG2 cells using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and the effect of panaxydol on cell cycle distributions by flow cytometry. We investigated the production of liver proteins in panaxydol-treated cells including alpha-fetoprotein and albumin and measured the specific activity of alkaline phosphatase and gamma-glutamyl transferase. We further investigated the effects of panaxydol on the expression of Id-1, Id-2, p21 and pRb by RT-PCR or immunoblotting analysis. We found that panaxydol inhibited the proliferation of HepG2 cells and caused morphological and ultrastructural changes in HepG2 cells resembling more mature forms of hepatocytes. Moreover, panaxydol induced a cell cycle arrest at the G1 to S transition in HepG2 cells. It also significantly decreased the secretion of alpha-fetoprotein and the activity of gamma-glutamyl transferase. By contrast, panaxydol remarkably increased the secretion of albumin and the alkaline phosphatase activity. Furthermore, panaxydol increased the mRNA content of p21 while reducing that of Id-1 and Id-2. Panaxydol also increased the protein levels of p21, pRb and the hypophosphorylated pRb in a dose-dependent manner. These findings suggest that panaxydol is of value for further exploration as a potential anti-cancer agent.  相似文献   

19.
The isolation and modification of natural products is always a very important resources to anti-tumor drugs. Therefore, a novel series of tetrandrine and fangchinoline derivatives were designed and synthesized, and their antiproliferative activities against HepG2, MCF-7 cells were evaluated and described. From the activity result obtained, high to very high activity in vitro has been found, one of the tested compounds (compound 5d) exhibited the most significant cytotoxic effects. Compound 5d increased 29.2, 7.37 times anti-proliferative activity for HepG2 cells and MCF-7 cells compared to sunitinib (IC50 = 16.06 μM and 25.41 μM). Finally flow cytometry determined that compound 5d could indeed inhibit the proliferation of HepG2 cells via inducing apoptosis.  相似文献   

20.
New semisynthetic derivatives of betulinic acid (BA) RS01, RS02 and RS03 with 18-45 times improved cytotoxic activity against HepG2 cells, were tested for their ability to induce apoptosis and cell cycle arrest in HepG2, HeLa and Jurkat cells. All the compounds induced significant increase in the population at the S phase more effectively than BA. RS01, RS02 and RS03 were also found to be potent inducers of apoptosis with RS01 being markedly more potent than BA, suggesting that the introduction of the imidazolyl moiety is crucial for enhancing the induction of apoptosis and the cell cycle arrest. The mechanism of apoptosis induction has been studied in HepG2 cells and found to be mediated by activation of the postmitochondrial caspases-9 and -3 cascade and possibly by mitochondrial amplification loop involving caspase-8. These facts were corroborated by detection of mitochondrial cytochrome c release and DNA fragmentation. Because RS01, RS02 and RS03 exhibited significant improved antitumor activity with respect to BA, they may be promising new agents for the treatment of cancer. In particular, RS01 is the most promising compound with an IC50 value 45 times lower than BA on HepG2 cells and 61 times lower than the one found for the non-tumoral Chang liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号