首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We examined the relation between nocturnal melatonin and hormonal markers of puberty in 57 normal children and adolescents and 39 subjects with disorders of pubertal onset. Melatonin was measured in hourly blood samples drawn overnight by constant withdrawal. Basal 08.00 h plasma testosterone, estradiol and LH, and the peak LH response to LHRH administration were determined. There were no significant correlations between testosterone, estradiol, basal LH and peak LH and melatonin peak (r = -0.18, -0.22, -0.02, -0.12, respectively) or melatonin peak time (r = 0.12, -0.01, -0.02, 0.07 respectively). The results were not affected significantly by sex, diagnosis or age. A comparison of subjects grouped by peak LH < 15 U/l (most likely prepubertal; n = 40) and peak LH > 30 U/l (most likely pubertal; n = 34) showed no significant differences in melatonin peak (160.5 +/- 59.3 vs. 146.6 +/- 50.9 pg/ml; t = 1.09; p > 0.05) or melatonin peak time (1.8 +/- 1.7 vs. 2.5 +/- 1.7 h; t = -1.79; p > 0.05). Although a pineal-puberty relation cannot be excluded, the results do not support the hypothesis that melatonin restrains the hypothalamic-pituitary-gonadal axis during childhood.  相似文献   

2.
Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed. The peak level of melatonin rise was not affected. As a result, the width of nocturnal melatonin rise was significantly shortened. In the second week, under bright light conditions ( approximately 5,000 lx), the phases of nocturnal melatonin rise were not changed further, but the peak level was significantly increased. Core body temperature at the initial sleep phase was progressively elevated during the course of dim light exposure and reached the maximum level at the first night of bright light conditions. Subjective sleepiness gradually declined in the course of dim light exposure and reached the minimum level at the first day of bright light. These findings indicate that repeated exposures to daytime bright light are effective in controlling the circadian phase and increasing the peak level of nocturnal melatonin rise in plasma and suggest a close correlation between phase-delay shifts of the onset of nocturnal melatonin rise or body temperature rhythm and daytime sleepiness.  相似文献   

3.
Puberty, which is markedly delayed in male Siberian hamsters (Phodopus sungorus) born into short day lengths, is controlled by an interval timer regulated by the duration of nocturnal melatonin secretion. Properties of the interval timer were assessed by perturbing normal patterns of melatonin secretion in males gestated and maintained thereafter in 1 of 2 short day lengths, 10 h light/day (10 L) or 12L. Melatonin secretion of short-day hamsters was suppressed by constant light treatment or modified by daily injection of propranolol to mimic nocturnal melatonin durations typical of long-day hamsters. Constant light treatment during weeks 3 to 5 induced early incomplete gonadal growth in 12L but not 10 L hamsters but did not affect late onset of gonadal development indicative of puberty in either photoperiod. Propranolol treatment during postnatal weeks 3 to 5 induced transient growth of the testes and ultimately delayed the timing of puberty by 3 weeks. Similar treatments between weeks 5 and 7 or on alternate weeks for 24 weeks did not affect the interval timer. The first 2 weeks after weaning may constitute a critical period during which the interval timer is highly responsive to photoperiod. Alternatively, the hamsters' photoperiodic history rather than age or developmental stage may be the critical variable. The interpolation of long-day melatonin signals at the time of weaning does not appear to reset the interval timer to its zero position but may reduce timer responsiveness to long-day melatonin signals several weeks later.  相似文献   

4.
The present study tested the hypothesis that responsiveness to melatonin, the presence of the melatonin rhythm in circulation, and parameters of the GnRH neuron system are sustained across the aging continuum in Siberian hamsters. Afternoon melatonin injections induced testicular atrophy in 42% of aged males compared with 100% of adult males. The proportion of aged males failing to respond to the melatonin injections was similar to the proportion that failed to undergo testicular regression upon exposure to short days. Exposure to short days induced testicular atrophy in juvenile and adult hamsters; however, regression was incomplete or absent in 43% of aged males. The nocturnal rise in melatonin was similar with regard to duration and peak amplitude, and appropriate with respect to photoperiod in 25-day-old juveniles, adult (5 months), and aged (17 months) hamsters. Neither advanced age nor timed melatonin treatments affected GnRH neuron numbers or distribution. Fertility was maintained in aged and adult males to a comparable extent with respect to latency to first litter and number of pups per litter; reproductive success was dramatically reduced in aged compared with adult females. Because melatonin rhythms accurately reflect day length information throughout the continuum from puberty to advanced age, the present evidence suggests that limitations in testis regression in response to short days or exogenous melatonin in a subset of aged males result from a reduced ability to respond to melatonin. In the wild, failure to undergo testicular regression in the presence of shortening day lengths may extend the breeding season of aged males.  相似文献   

5.
Appearance of a nocturnal peak of leptin secretion in the pubertal rat   总被引:4,自引:0,他引:4  
Whether leptin is involved in the timing of puberty remains highly controversial in the rat. Daytime leptin secretion shows little change during the transition into adulthood. Because leptin exhibits a diurnal variation in the adult, it is possible that the ontogeny of such a rhythm provides important information for the timing of puberty. To begin to evaluate this hypothesis, we determined the development of the diurnal leptin secretion in the rat. The young females were raised in a light-controlled environment (12L, 0700 h light on). A cannula was placed in the right atrium on the previous day, and blood samples were collected every 4 h on Days 21, 24, 28, 32, 36 (1 day after vaginal opening), and 48 (adult, diestrus of estrous cycle). In addition to vaginal opening, plasma prolactin levels were determined as an endocrine index of puberty. Changes in food intake were monitored because nocturnal food intake has been considered to be a synchronizer for the leptin rhythm. This pattern of food intake was clearly evident throughout the ages studied. By contrast, there was no leptin rhythm at 21 and 24 days of age. Beginning at 28 days, leptin secretion exhibited a significant nocturnal peak (2300 h); this nocturnal peak increased in amplitude at 32 and 36 days and was still apparent in the cycling adult at Day 48. Plasma prolactin did not exhibit a diurnal rhythm but it increased from Days 32 to 48. The present findings indicate that in the rat, both the appearance of the nocturnal leptin rhythm and the nocturnal increase in circulating leptin levels during development carry information for timing the onset of puberty.  相似文献   

6.
Spring-born female lambs require a decrease in day length for the normal timing of puberty the following autumn. If this decrease occurs early in postnatal life (i.e. 0-10 weeks), puberty is delayed. This study tested the hypothesis that failure of the neonatal lamb to respond to the critical long-day to short-day signal is due to inadequate nocturnal melatonin secretion. The approach was to artificially increase, to adult levels, the low nighttime rises of melatonin during the early postnatal period. Eight female lambs served as controls; they were raised on short days until 17 wk of age, and then exposed to 5 wk of long days, after which they were returned to short days. This alternating sequence of photoperiods during mid-development would be expected to induce normal puberty. Sixteen experimental females were exposed to the critical block of long days much earlier; they were placed in long days between 2 and 7 wk of age and in short days thereafter. Half (n = 8) received no further treatment. The other half (n = 8) were infused nightly with melatonin during the 8-h dark phase of the 5-wk, long-day photoperiod. This increased the amplitude of the natural nighttime melatonin rises 3- to 4-fold, well into the adult range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The circadian dynamics of responses to cyclic guanosine 3',5'-monophosphate (cGMP) in in vitro experiments and the stimulating effects of the pineal hormone melatonin on cGMP levels both in vitro and in vivo provoked an investigation into the diurnal pattern of occurrence of this second messenger in human plasma and its correlation with plasma melatonin levels. Plasma cGMP levels were measured in 9 normal human subjects who were over 50 years of age. Samples were obtained hourly through a 20-h period (11 a.m. to 7 a.m.) that included the subjects' habitual hours of nocturnal sleep; physical activity was kept to a minimum during the daylight hours. The area under the time-plasma cGMP concentration curve showed a significant increase during the period of nocturnal sleep compared to that observed during the period of daytime wakefulness. The individual temporal pattern of the nocturnal rise in plasma cGMP differed among the subjects; however, the initial increase typically was observed soon after bedtime. No significant correlation was observed between individual nocturnal plasma melatonin levels and cGMP levels.  相似文献   

8.
In this experiment we investigated whether the lack of the nocturnal melatonin peak under constant light would cause an increase in testosterone sensitivity. Castrated rats were kept under periodic or constant light for one week. They received a daily injection of vehicle, testosterone propionate (125 micrograms), melatonin (50 micrograms) or testosterone plus melatonin (125 micrograms + 50 micrograms). Serum and pituitary gonadotrophins and pineal melatonin were measured at the end of the experiment. Under constant light, testosterone injections reduced the serum luteinizing hormone concentration in castrated rats to that in intact rats, but, under periodic light, the decrease was smaller. Melatonin did not reverse the stronger effect of testosterone under constant light. The serum melatonin peak produced by the exogenous melatonin injection had a higher amplitude, shorter duration and earlier appearance than the physiological melatonin peak. Exogenous melatonin did not modify the physiological melatonin secretion, measured either as serum melatonin concentration or pineal melatonin content on the consecutive day. We conclude that the increase in testosterone negative feedback sensitivity of castrated rats under constant light was not due to the absence of the nocturnal melatonin pulse.  相似文献   

9.
The ability of exogenous melatonin, applied either orally or by implant, to overcome the seasonal inhibition of puberty in domestic gilts was tested in two experiments. In Expt 1, 24 gilts received two melatonin implants at 126 days of age and again at 161 days and 196 days, while 24 gilts acted as controls. All gilts were slaughtered at a mean age of 223 days. Blood samples were collected by venepuncture from eight gilts in each treatment at 126, 144 and 178 days of age and the plasma was assayed for melatonin concentration by direct radioimmunoassay. In Expt 2A, four gilts (125 days of age) were fed either 0, 1, 2 or 4 mg of melatonin at 14:00 h on each of four consecutive days. Blood samples for melatonin assay were collected via indwelling jugular catheters every 30 or 60 min from 12:00 to 22:00 h. In Expt 2B, 27 gilts were fed 1 mg of melatonin at 15:00 h each day from 129 days of age until slaughter at 221 days, while 25 gilts acted as controls. In both experiments, the presence of morphologically normal corpora lutea at slaughter was the criterion for puberty. In Expt 1, constant-release melatonin implants had no effect on the percentage of gilts which reached puberty. Among the 24 control gilts, two (8.3%) reached puberty compared with one of the 24 (4.2%) gilts with implants. In all the samples from control gilts, and in the samples taken from treated gilts prior to implantation at 126 days of age, mean plasma melatonin concentration was below the sensitivity of the assay (3.6 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Although previous reports indicate that nocturnal plasma melatonin secretion declines with age, some recent findings do not support this point. In the present cross-sectional study, we documented serum melatonin concentrations at two time points, 02:00 and 08:00 h, in 144 persons aged 30-110 yr and found a significant age-related decline. It began around the age of 60 and reached a very significantly lower level in subjects in their 70s and over 80 yr of age (P < 0.01, when compared with age <60 yr). Nocturnal melatonin levels were higher among (post-menopausal only) women than men overall (P < 0.05). In the older age-groups, nocturnal melatonin levels did not differ between healthy controls and subjects with high blood pressure or ischemic heart disease. To further check these results, we also assessed the circadian pattern of serum melatonin in four subgroups of healthy men, aged 30-39, 40-49, 50-59, and 60-69 yr: blood samples were taken at 2 h intervals from 08:00 to 22:00 h and hourly from 22:00 to 08:00 h. Our results showed generally similar circadian melatonin patterns that peaked at night with very low levels during the daytime. No significant difference was found among the three younger groups, but nocturnal melatonin levels were significantly lower in the men in their 60s.  相似文献   

11.
GnRH-induced LH-release was studied in female lambs from 5 weeks of age until puberty and in adult anoestrous ewes. In pre-pubertal animals LH was released rapidly after GnRH treatment but after puberty the responses became slower and more sustained although the peak concentration did not change. In neither pre-pubertal nor adult sheep did prior treatment with melatonin influence LH release after GnRH treatment.  相似文献   

12.
This experiment tested effects of human eye pigmentation depending on the ethnicity on suppression of nocturnal melatonin secretion by light. Ten healthy Caucasian males with blue, green, or light brown irises (light-eyed Caucasians) and 11 Asian males with dark brown irises (dark-eyed Asians) volunteered to participate in the study. The mean ages of the light-eyed Caucasians and dark-eyed Asians were 26.4 +/- 3.2 and 25.3 +/- 5.7 years, respectively. The subjects were exposed to light (1,000 lux) for 2 h at night. The starting time of exposure was set to 2 h before the time of peak salivary melatonin concentration of each subject, which was determined in a preliminary experiment. Salivary melatonin concentration and pupil size were measured before exposure to light and during exposure to light. The percentage of suppression of melatonin secretion by light was calculated. The percentage of suppression of melatonin secretion 2 h after the start of light exposure was significantly larger in light-eyed Caucasians (88.9 +/- 4.2%) than in dark-eyed Asians (73.4 +/- 20.0%) (P < 0.01). No significant difference was found between pupil sizes in light-eyed Caucasians and dark-eyed Asians. These results suggest that sensitivity of melatonin to light suppression is influenced by eye pigmentation and/or ethnicity.  相似文献   

13.
《Chronobiology international》2013,30(6):1171-1182
Although previous reports indicate that nocturnal plasma melatonin secretion declines with age, some recent findings do not support this point. In the present cross-sectional study, we documented serum melatonin concentrations at two time points, 02:00 and 08:00h, in 144 persons aged 30–110 yr and found a significant age-related decline. It began around the age of 60 and reached a very significantly lower level in subjects in their 70s and over 80 yr of age (P<0.01, when compared with age <60 yr). Nocturnal melatonin levels were higher among (post-menopausal only) women than men overall (P<0.05). In the older age-groups, nocturnal melatonin levels did not differ between healthy controls and subjects with high blood pressure or ischemic heart disease. To further check these results, we also assessed the circadian pattern of serum melatonin in four subgroups of healthy men, aged 30–39, 40–49, 50–59, and 60–69 yr: blood samples were taken at 2h intervals from 08:00 to 22:00h and hourly from 22:00 to 08:00h. Our results showed generally similar circadian melatonin patterns that peaked at night with very low levels during the daytime. No significant difference was found among the three younger groups, but nocturnal melatonin levels were significantly lower in the men in their 60s.  相似文献   

14.
To examine the immediate phase-shifting effects of high-intensity exercise of a practical duration (1 h) on human circadian phase, five groups of healthy men 20-30 yr of age participated in studies involving no exercise or exposure to morning, afternoon, evening, or nocturnal exercise. Except during scheduled sleep/dark and exercise periods, subjects remained under modified constant routine conditions allowing a sleep period and including constant posture, knowledge of clock time, and exposure to dim light intensities averaging (+/-SD) 42 +/- 19 lx. The nocturnal onset of plasma melatonin secretion was used as a marker of circadian phase. A phase response curve was used to summarize the phase-shifting effects of exercise as a function of the timing of exercise. A significant effect of time of day on circadian phase shifts was observed (P < 0.004). Over the interval from the melatonin onset before exercise to the first onset after exercise, circadian phase was significantly advanced in the evening exercise group by 30 +/- 15 min (SE) compared with the phase delays observed in the no-exercise group (-25 +/- 14 min, P < 0.05). Phase shifts in response to evening exercise exposure were attenuated on the second day after exercise exposure and no longer significantly different from phase shifts observed in the absence of exercise. Unanticipated transient elevations of melatonin levels were observed in response to nocturnal exercise and in some evening exercise subjects. Taken together with the results from previous studies in humans and diurnal rodents, the current results suggest that 1) a longer duration of exercise exposure and/or repeated daily exposure to exercise may be necessary for reliable phase-shifting of the human circadian system and that 2) early evening exercise of high intensity may induce phase advances relevant for nonphotic entrainment of the human circadian system.  相似文献   

15.
Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats. The findings are generally consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations.  相似文献   

16.
Prepubertal ewe lambs were treated with empty or filled melatonin implants. The implants were placed s.c. at birth and pituitary responsiveness to various doses of LHRH, LH/FSH pulsatility and prolactin and melatonin secretion were examined at 10, 19, 28, 36 and 45 weeks of age. Control animals (N = 10) showed no consistent alteration in pituitary responsiveness to LHRH during development. Ewes treated with melatonin (N = 10) had puberty onset delayed by 4 weeks (P less than 0.03) but no effect of melatonin on LH or FSH response to LHRH injection was observed at any stage of development. In the control and melatonin-treated ewe lambs the responses to LHRH injection were lower during darkness than during the day at all stages of development. No consistent differences in LH or FSH pulsatility were observed between treatment groups or during development. Prolactin concentrations, however, failed to decrease at the time of puberty (autumn) in the melatonin-treated group. Melatonin-treated ewe lambs maintained normal rhythmic melatonin production which was superimposed on a higher basal concentration and showed the same increase in melatonin output with age as the control ewes. These results indicate that the delayed puberty caused by melatonin implants is not due to decreased pituitary responsiveness to LHRH or to dramatic changes in basal LH or FSH secretion.  相似文献   

17.
The rhythm of melatonin in rat milk and the capacity of pups to synthesize and metabolize melatonin were studied. Melatonin was undetectable in milk in the light (< 21 pM), but increased rapidly 2-4 h after dark to peak at 357 +/- 66 pM at mid-dark. Oral or subcutaneous administration of melatonin to 5- and 10-day-old pups resulted in peak plasma melatonin levels 30 min after administration and rapid metabolism. Increases in pineal and plasma melatonin levels at night were detected at 5 and 6 days of age, respectively. Isoproterenol administration (2 microg/g body wt) at mid-light to day 10 pups increased plasma melatonin from 312 +/- 40 pM to 1,298 +/- 160 pM, whereas propranolol (2 microg/g body wt) suppressed nocturnal melatonin secretion from 1,270 +/- 128 pM to 395 +/- 66 pM. The rise of pineal and plasma melatonin in day 10 pups occurred 1 and 2 h after dark onset, respectively, preceding the onset in dams by 3 and 4 h, respectively. Propranolol administration to 2- and 5-day lactating dams inhibited plasma and milk melatonin at night but had no effect on their suckling pups. Transfer of melatonin via the milk is unlikely to provide an entraining signal for rat pups.  相似文献   

18.
The effect of a 1-hr light pulse, given at night, on the timing of the circadian rhythm in the plasma concentration of melatonin was examined in Soay rams to investigate the mechanisms involved in determining the duration of the nocturnal peak in melatonin secretion. Animals (n = 8) were housed under short days (LD 8:16) or long days (LD 16:8) and received a light pulse at various times of night. They were released into constant dim red light (DD) on day 1. Blood samples were collected hourly for 30 hr from 1000 hr on day 3, and the plasma concentration of melatonin was determined by radioimmunoassay to assess the timing of the melatonin peak. Control animals (n = 8) were maintained under the same conditions but received no light pulse. Under short days, a light pulse given early in the night caused a phase delay in the melatonin peak, and a light pulse given in the late night caused a phase advance. The mean duration of the melatonin peak was slightly reduced following a light pulse in the early or late night, and slightly increased following a pulse given near the middle of the night. Under long days, both light-pulse treatments given at night caused a phase delay in the melatonin peak, but there was no significant change in duration of the melatonin peak. The duration of the melatonin peak at day 3 under DD in the control animals was similar for all treatments, regardless of the previous entraining photoperiod (mean duration: 12.6-14.8 hr) and was similar to that under short days (14.6 hr), but was significantly longer than that under long days (8.2 hr). Information on the phase response curve in the Soay ram and on the period of the circadian oscillator governing the melatonin rhythm (c 23.0 hr under DD) predicts a close phase relationship between the end of the light phase and the onset of the melatonin peak as observed under normal 24-hr LD cycles. The current results also indicate that light acts to entrain the circadian rhythm influencing the onset and offset of melatonin secretion, and thus dictates the duration of the melatonin peak.  相似文献   

19.
This study evaluates the pattern of plasma melatonin during the trough and the peak of its daily rhythm. Blood samples from 8 ewes were collected every 3 h for a 48-h period. On the third day, blood samples were collected from 10:00 to 13:00 (trough) and from 20:00 to 23:00 (peak) every 20 min. Our results showed a robust daily rhythm of melatonin in both days of monitoring, with nocturnal acrophase. During the trough, a significant decrease was observed starting from the 10:40 with a progressive decrease about every 40 min. During the peak of the plasma melatonin daily rhythm, an increase was observed starting from the 20:40 with a progressive increase about every 40 min. These data could be taken in consideration to monitor the plasma melatonin variations during the 24 h, and for the administration of melatonin for breeding in ewes.  相似文献   

20.
B D Goldman 《Steroids》1991,56(5):218-225
The major function of the mammalian pineal gland appears to be its central role in photoperiodism. The pineal hormone, melatonin, is synthesized and secreted primarily at night, under the control of a circadian oscillator that is entrained to the light-dark cycle. Both the circadian phase and the duration of the nocturnal peak of melatonin secretion are established primarily by interactions between the endogenous circadian oscillator and the daily photic cycle. The duration of the melatonin peak varies inversely with day length, and this relationship between day length and the duration of each circadian melatonin peak appears to be an integral part of the photoperiodic mechanism. When pinealectomized animals are given daily melatonin infusions of long duration, they exhibit physiologic responses that normally are observed during exposure to short day photoperiods; when administered short-duration melatonin infusions, the animals display long photoperiod-type responses. In addition to the importance of the duration of each melatonin peak, certain other parameters appear to be significant. If a long-duration infusion of melatonin is interrupted by a period of 2 hours or more without melatonin (i.e., to produce two short duration infusions), the responses are those typical for long day-exposed animals. Thus, to elicit short day-type responses, each long-duration melatonin peak must be relatively continuous; responses are not determined simply by the total time of exposure to melatonin in each circadian cycle. Also, long-duration melatonin peaks may not be effective to elicit photoperiod-type responses unless they are present at frequencies of nearly once every 24 hours or more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号