首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiotic drive, the class of meiotic mechanisms that drive unequal segregation of alleles among gametes, may be an important force in karyotype evolution. Its role in holocentric organisms, whose chromosomes lack localized centromeres, is poorly understood. We crossed two individuals of Carex scoparia (Cyperaceae) with different chromosome numbers (2n = 33II = 66 × 2n = 32II = 64) to obtain F1 individuals, which we then self‐pollinated to obtain second‐generation (F2) crosses. RAD‐seq was performed for 191 individuals (including the parents, five F1 individuals and 184 F2 individuals). Our F2 linkage map based on stringent editing of the RAD‐seq data set yielded 32 linkage groups. In the final map, 865 loci were located on a linkage map of 3966.99 cM (linkage groups ranged from 24.39 to 193.31 cM in length and contained 5–51 loci each). Three linkage groups exhibit more loci under segregation distortion than expected by chance; within linkage groups, loci exhibiting segregation distortion are clustered. This finding implicates meiotic drive in the segregation of chromosome variants, suggesting that selection of chromosome variants in meiosis may contribute to the establishment and fixation of chromosome variants in Carex, which is renowned for high chromosomal and species diversity. This is an important finding as previous studies demonstrate that chromosome divergence may play a key role in differentiation and speciation in Carex.  相似文献   

2.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

3.
The sedge family (Cyperaceae: Poales; ca. 5600 spp.) is a hyperdiverse cosmopolitan group with centres of species diversity in Africa, Australia, eastern Asia, North America, and the Neotropics. Carex, with ca. 40% of the species in the family, is one of the most species-rich angiosperm genera and the most diverse in temperate regions of the Northern Hemisphere, making it atypical among plants in that it inverts the latitudinal gradient of species richness. Moreover, Carex exhibits high rates of chromosome rearrangement via fission, fusion, and translocation, which distinguishes it from the rest of the Cyperaceae. Here, we use a phylogenetic framework to examine how the onset of contemporary temperate climates and the processes of chromosome evolution have influenced the diversification dynamics of Carex. We provide estimates of diversification rates and map chromosome transitions across the evolutionary history of the main four clades of Carex. We demonstrate that Carex underwent a shift in diversification rates sometime between the Late Eocene and the Oligocene, during a global cooling period, which fits with a transition in diploid chromosome number. We suggest that adaptive radiation to novel temperate climates, aided by a shift in the mode of chromosome evolution, may explain the large-scale radiation of Carex and its latitudinal pattern of species richness.  相似文献   

4.
The megadiverse genus Carex (c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in cold‐temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis of Carex biogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensive Carex‐dated phylogeny based on three markers (ETS–ITS–matK), using a previous phylogenomic Hyb‐Seq framework, and a sampling of two‐thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal that Carex originated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle of Carex diversification, as well as a “museum” of extant species diversity. Subsequent “out‐of‐Asia” colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10 My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.  相似文献   

5.
Chromosome rearrangements may affect the rate and patterns of gene flow within species, through reduced fitness of structural heterozygotes or by reducing recombination rates in rearranged areas of the genome. While the effects of chromosome rearrangements on gene flow have been studied in a wide range of organisms with monocentric chromosomes, the effects of rearrangements in holocentric chromosomes—chromosomes in which centromeric activity is distributed along the length of the chromosome—have not. We collected chromosome number and molecular genetic data in Carex scoparia, an eastern North American plant species with holocentric chromosomes and highly variable karyotype (2n = 56–70). There are no deep genetic breaks within C. scoparia that would suggest cryptic species differentiation. However, genetic distance between individuals is positively correlated with chromosome number difference and geographic distance. A positive correlation is also found between chromosome number and genetic distance in the western North American C. pachystachya (2n = 74–81). These findings suggest that geographic distance and the number of karyotype rearrangements separating populations affect the rate of gene flow between those populations. This is the first study to quantify the effects of holocentric chromosome rearrangements on the partitioning of intraspecific genetic variance.  相似文献   

6.
Holocentric chromosomes-chromosomes that lack localized centromeres-occur in numerous unrelated clades of insects, flatworms, and angiosperms. Chromosome number changes in such organisms often result from fission and fusion events rather than polyploidy. In this study, I test the hypothesis that chromosome number evolves according to a uniform process in Carex section Ovales (Cyperaceae), the largest New World section of an angiosperm genus renowned for its chromosomal variability and species richness. I evaluate alternative models of chromosome evolution that allow for shifts in both stochastic and deterministic evolutionary processes and that quantify the rate of evolution and heritability/phylogenetic dependence of chromosome number. Estimates of Ornstein-Uhlenbeck model parameters and tree-scaling parameters in a generalized least squares framework demonstrate that (1) chromosome numbers evolve rapidly toward clade-specific stationary distributions that cannot be explained by constant variance (Brownian motion) evolutionary models, (2) chromosome evolution in the section is rapid and exhibits little phylogenetic inertia, and (3) explaining the phylogenetic pattern of chromosome numbers in the section entails inferring a shift in evolutionary dynamics at the root of a derived clade. The finding that chromosome evolution is not a uniform process in sedges provides a novel example of karyotypic orthoselection in an organism with holocentric chromosomes.  相似文献   

7.
Changes in holocentric chromosome number due to fission and fusion have direct and immediate effects on genome structure and recombination rates. These, in turn, may influence ecology and evolutionary trajectories profoundly. Sedges of the genus Carex (Cyperaceae) comprise ca. 2000 species with holocentric chromosomes. The genus exhibits a phenomenal range in the chromosome number (2n = 10 − 132) with almost not polyploidy. In this study, we integrated the most comprehensive cytogenetic and phylogenetic data for sedges with associated climatic and morphological data to investigate the hypothesis that high recombination rates are selected when evolutionary innovation is required, using chromosome number evolution as a proxy for recombination rate. We evaluated Ornstein–Uhlenbeck models to infer shifts in chromosome number equilibrium and selective regime. We also tested the relationship between chromosome number and diversification rates. Our analyses demonstrate significant correlations between morphology and climatic niche and chromosome number in Carex. Nevertheless, the amount of chromosomal variation that we are able to explain is very small. We recognized a large number of shifts in mean chromosome number, but a significantly lower number in climatic niche and morphology. We also detected a peak in diversification rates near intermediate recombination rates. In combination, these analyses point toward the importance of chromosome evolution to the evolutionary history of Carex. Our work suggests that the effect of chromosome evolution on recombination rates, not just on reproductive isolation, may be central to the evolutionary history of sedges.  相似文献   

8.
Karyotype data within a phylogenetic framework and molecular dating were used to examine chromosome evolution in Nierembergia and to infer how geological or climatic processes have influenced in the diversification of this solanaceous genus native to South America and Mexico. Despite the numerous studies comparing karyotype features across species, including the use of molecular phylogenies, to date relatively few studies have used formal comparative methods to elucidate chromosomal evolution, especially to reconstruct the whole ancestral karyotypes. Here, we mapped on the Nierembergia phylogeny one complete set of chromosomal data obtained by conventional staining, AgNOR‐, C‐ and fluorescent chromosome banding, and fluorescent in situ hybridisation. In addition, we used a Bayesian molecular relaxed clock to estimate divergence times between species. Nierembergia showed two major divergent clades: a mountainous species group with symmetrical karyotypes, large chromosomes, only one nucleolar organising region (NOR) and without centromeric heterochromatin, and a lowland species group with asymmetrical karyotypes, small chromosomes, two chromosomes pairs with NORs and centromeric heterochromatin bands. Molecular dating on the DNA phylogeny revealed that both groups diverged during Late Miocene, when Atlantic marine ingressions, called the ‘Paranense Sea’, probably forced the ancestors of these species to find refuge in unflooded areas for about 2 Myr. This split agrees with an increased asymmetry and heterochromatin amount, and decrease in karyotype length and chromosome size. Thus, when the two Nierembergia ancestral lineages were isolated, major divergences occurred in chromosomal evolution, and then each lineage underwent speciation separately, with relatively minor changes in chromosomal characteristics.  相似文献   

9.
报道了中国莎草科(Cyperaceae)薹草属一新记录种——菊芳薹草(Carex trongii K.K.Nguyen)。该种分布于我国广西与越南交界地区的石灰岩地区。菊芳薹草与宽叶薹草组(Carex sect.Siderostictae Ohwi)的种类在形态上近似,但以秆中生和果囊密被糙毛而易于区别。提供了菊芳薹草的形态描述和线条图。  相似文献   

10.
The holocentric structure promotes chromosome rearrangements by fission, fusion, translocation, and inversion, which have been thought to promote differentiation and speciation. The Carex laevigata group (Cyperaceae) comprises four species: two restricted endemics from the western Mediterranean (Carex camposii, 2n = 72, and Carex paulo-vargasii, 2n = 74–75), and two more widespread species, found mostly in Western Europe (C. laevigata, 2n = 69–84, and Carex binervis, 2n = 72–74). We tested the selection for chromosome number by climatic variables by controlling for the non-independence of the data using generalized linear mixed model (GLMM). We obtained chromosome counts as well as DNA sequences for the 5′ trnK intron and the trnV-ndhC intergenic spacer in the chloroplast genome from 181 individuals from 53 populations representing these four species. We also climatically characterized the sites where the 53 populations were found using the WorldClim database. Our results show that the best predictor of chromosome number variation is the climatic environment rather than neutral evolutionary processes like founder events and migration patterns. These results support the adaptive value of the holocentric chromosomes and their role in promoting differentiation and eventually speciation.  相似文献   

11.
为探究薹草属(Carex L.)植物在不同植被类型中的分布状况,该研究对甘肃中东部地区9种薹草属(Carex L.)植物分布区的群落特征进行调查,并对土壤养分状况进行比较分析,以揭示野生薹草群落物种多样性和分布特征与土壤环境因子间的关系。结果表明:(1) 9种薹草群落物种多样性差异性较大,Shannon-Wiener多样性指数(H)、Simpson优势度指数(Dsi)均以青绿薹草群落最高,亚柄薹草最低;Patrick丰富度指数(R)以异穗薹草群落最高,细叶薹草群落最低;Pielou均匀度指数(Jsw)以凹脉薹草群落最高,亚柄薹草最低。(2) 9种野生薹草属植物适宜生长的土壤pH呈中性或弱碱性,且有机质、氮素、钾素含量较丰富,磷含量偏低;土壤有机质、pH、全氮、全磷、全钾、碱解氮、速效磷、速效钾含量的平均值分别为41.07 g·kg-1、8.35、1.16 g·kg-1、0.65 g·kg-1、5.60 g·kg-1、47.94 mg·kg-1、5.82 mg·kg-1和100.60 mg·kg-1。(3) 9种薹草属植物群落物种多样性与全氮、全磷、全钾、碱解氮、有机质、降雨量和海拔呈正相关关系,而与土壤pH、速效磷、速效钾呈负相关关系,且降雨量、土壤pH、速效磷和有机质对9种野生薹草属植物群落物种多样性影响较大。  相似文献   

12.
In the present work we report the phosphorylation pattern of histone H3 and the development of microtubular structures using immunostaining techniques, in mitosis of Rhynchospora tenuis (2n = 4), a Cyperaceae with holocentric chromosomes. The main features of the holocentric chromosomes of R. tenuis coincide with those of other species namely: the absence of primary constriction in prometaphase and metaphase, and the parallel separation of sister chromatids at anaphase. Additionaly, we observed a highly conserved chromosome positioning at anaphase and early telophase sister nuclei. Four microtubule arrangements were distinguished during the root tip cell cycle. Interphase cells showed a cortical microtubule arrangement that progressively forms the characteristic pre-prophase band. At prometaphase the microtubules were homogeneously distributed around the nuclear envelope. Metaphase cells displayed the spindle arrangement with kinetochore microtubules attached throughout the entire chromosome extension. At anaphase kinetochoric microtubules become progressively shorter, whereas bundles of interzonal microtubules became increasingly broader and denser. At late telophase the microtubules were observed equatorially extended beyond the sister nuclei and reaching the cell wall. Immunolabelling with an antibody against phosphorylated histone H3 revealed the four chromosomes labelled throughout their entire extension at metaphase and anaphase. Apparently, the holocentric chromosomes of R. tenuis function as an extended centromeric region both in terms of cohesion and H3 phosphorylation.  相似文献   

13.
Bipolar disjunct distributions are a fascinating biogeographic pattern exhibited by about 30 vascular plants, whose populations reach very high latitudes in the northern and southern hemispheres. In this review, we first propose a new framework for the definition of bipolar disjunctions and then reformulate a list of guiding principles to consider how to study bipolar species. Vicariance and convergent evolution hypotheses have been argued to explain the origin of this fragmented distribution pattern, but we show here that they can be rejected for all bipolar species, except for Carex microglochin. Instead, human introduction and dispersal (either direct or by mountain‐hopping)facilitated by standard and nonstandard vectorsare the most likely explanations for the origin of bipolar plant disjunctions. Successful establishment after dispersal is key for colonization of the disjunct areas and appear to be related to both intrinsic (e.g., self‐compatibility) and extrinsic (mutualistic and antagonistic interactions) characteristics. Most studies on plant bipolar disjunctions have been conducted in Carex (Cyperaceae), the genus of vascular plants with the largest number of bipolar species. We found a predominant north‐to‐south direction of dispersal, with an estimated time of diversification in agreement with major cooling events during the Pliocene and Pleistocene. Bipolar Carex species do not seem to depend on specialized traits for long‐distance dispersal and could have dispersed through one or multiple stochastic events, with birds as the most likely dispersal vector.  相似文献   

14.
Satellite DNA repeats (or satDNA) are fast-evolving sequences usually associated with condensed heterochromatin. To test whether the chromosomal organisation of centromeric and non-centromeric satDNA differs in species with holocentric chromosomes, we identified and characterised the major satDNA families in the holocentric Cyperaceae species Rhynchospora ciliata (2n = 10), R. globosa (2n = 50) and R. tenuis (2n = 2x = 4 and 2n = 4x = 8). While conserved centromeric repeats (present in R. ciliata and R. tenuis) revealed linear signals at both chromatids, non-centromeric, species-specific satDNAs formed distinct clusters along the chromosomes. Colocalisation of both repeat types resulted in a ladder-like hybridisation pattern at mitotic chromosomes. In interphase, the centromeric satDNA was dispersed while non-centromeric satDNA clustered and partly colocalised to chromocentres. Despite the banding-like hybridisation patterns of the clustered satDNA, the identification of chromosome pairs was impaired due to the irregular hybridisation patterns of the homologues in R. tenuis and R. ciliata. These differences are probably caused by restricted or impaired meiotic recombination as reported for R. tenuis, or alternatively by complex chromosome rearrangements or unequal condensation of homologous metaphase chromosomes. Thus, holocentricity influences the chromosomal organisation leading to differences in the distribution patterns and condensation dynamics of centromeric and non-centromeric satDNA.  相似文献   

15.
Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.  相似文献   

16.
Carex (Cyperaceae) is one of the largest genera of the flowering plants, and comprises more than 2,000 species. In Carex, section Siderostictae with broader leaves distributed in East Asia is thought to be an ancestral group. We aimed to clarify the phylogenetic relationships and chromosomal variations within the section Siderostictae, and to examine the relationship of broad-leaved species of the sections Hemiscaposae and Surculosae from East Asia, inferred from DNA sequences and cytological data. Our results indicate that a monophyletic Siderostictae clade, including the sections Hemiscaposae, Siderostictae and Surculosae, as the earliest diverging group in the tribe Cariceae. Low chromosome numbers, 2n = 12 or 24, with large sizes were observed in these three sections. Our results suggest that the genus Carex might have originated or relictly restricted in the East Asia. Geographical distributions of diploid species are restricted in narrower areas, while those of tetraploid species are wider in East Asia. It is concluded that chromosomal variations in Siderostictae clade may have been caused by polyploidization and that tetraploid species may have been able to exploit their habitats by polyploidization.  相似文献   

17.
In higher plants, the large‐scale structure of monocentric chromosomes consists of distinguishable eu‐ and heterochromatic regions, the proportions and organization of which depend on a species' genome size. To determine whether the same interplay is maintained for holocentric chromosomes, we investigated the distribution of repetitive sequences and epigenetic marks in the woodrush Luzula elegans (3.81 Gbp/1C). Sixty‐one per cent of the L. elegans genome is characterized by highly repetitive DNA, with over 30 distinct sequence families encoding an exceptionally high diversity of satellite repeats. Over 33% of the genome is composed of the Angela clade of Ty1/copia LTR retrotransposons, which are uniformly dispersed along the chromosomes, while the satellite repeats occur as bands whose distribution appears to be biased towards the chromosome termini. No satellite showed an almost chromosome‐wide distribution pattern as expected for a holocentric chromosome and no typical centromere‐associated LTR retrotransposons were found either. No distinguishable large‐scale patterns of eu‐ and heterochromatin‐typical epigenetic marks or early/late DNA replicating domains were found along mitotic chromosomes, although super‐high‐resolution light microscopy revealed distinguishable interspersed units of various chromatin types. Our data suggest a correlation between the centromere and overall genome organization in species with holocentric chromosomes.  相似文献   

18.
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo‐Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species‐specific C‐banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine‐cytosine‐rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.  相似文献   

19.
C. Collet  M. Westerman 《Genetica》1987,74(2):95-103
The woodrush genus Luzula is characterised by having holocentric chromosomes. DNA of nine related Australasian species shows similar satellite DNAs which re very similar in nucleotide sequence content and unit length. Differences between the repetitive DNAs are evident as either the presence or absence of particular restriction enzyme sites. Sequence variants have probably been introduced into the repeated DNA components of ancestral species and particular variants reamplified during the evolution of the genus. Sequence amplification appears to be restricted to sequences already present in the genome rather thant the de novo generation of repeats. The evolution of highly-repeated DNA sequences dispersed throughout the holocentric chromosomes of Luzula thus appears to be very similar to that known in eukaryotes with the more normal monocentric chromosome organisation.  相似文献   

20.
B chromosomes are additional chromosomes widely studied in a diversity of eukaryotic groups, including fungi, plants and animals, but their origin, evolution and possible functions are not clearly understood. To further understand the genomic content and the evolutionary history of B chromosomes, classical and molecular cytogenetic analyses were conducted in the cichlid fish Astatotilapia latifasciata, which harbor 1–2 B chromosomes. Through cytogenetic mapping of several probes, including transposable elements, rRNA genes, a repeated DNA genomic fraction (C 0 t − 1 DNA), whole genome probes (comparative genomic hybridization), and BAC clones from Oreochromis niloticus, we found similarities between the B chromosome and the 1st chromosome pair and chromosomes harboring rRNA genes. Based on the cytogenetic mapping data, we suggest the B chromosome may have evolved from a small chromosomal fragment followed by the invasion of the proto-B chromosome by several repeated DNA families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号