首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THE BIOLOGICAL OXIDATION OF SPENT GAS LIQUOR   总被引:4,自引:4,他引:0  
SUMMARY: Mixed cultures of bacteria grown in spent gas liquor readily oxidized phenol, o -, m - and p -cresol, catechol, 3-methyl catechol, 4-methyl catechol, resorcinol, 2-methyl resorcinol, and 4-methyl resorcinol. Quinol, pyrogallol and phloroglucinol were more resistant. The optimum temperature was 30° and the best pH range 6·5–7·8. Yeast extract and sterile sewage sludge both increased the rate of growth of organisms in liquor when the inoculum was small. Five phenol oxidizing organisms were isolated in pure culture. Copper in concentrations greater than 1 p/m inhibited both growth and phenol oxidation by one of these.
Mixed cultures grown in an ammonium thiocyanate medium originally inoculated with Thiobacillus thiocyanoxidans oxidized potassium thiocyanate and sodium thiosulphate. Chloride inhibited thiocyanate oxidation in concentrations above 5,000 p/m, although adaptation to 15,000 p/m was possible. Phenol inhibited thiocyanate oxidation in concentrations of 300 p/m or more. Mixed cultures grown on sodium thiosulphate oxidized sodium trithionate and tetrathionate, potassium pentathionate and hexa-thionate, and potassium and ammonium thiocyanate
Manometric determinations of the 5 day biological oxygen demand of effluents after treatment showed good agreement with the values obtained by the conventional method, the manometric values being usually somewhat higher.  相似文献   

2.
Chlorophenolic waste most often contains phenol and rho-cresol along with chlorophenols. A Rhodococcus erythropolis strain M1 was isolated with the ability to degrade 2-chlorophenol, phenol and p-cresol (100 mgl(-1), each) in 18, 24 and 20 h, respectively, with negligible lag. However, Rhodococcus sp. characterized by low growth rate, pose a threat to be outgrown by bacteria occurring in natural habitats. In the present study, interaction of R. erythropolis M1 with another isolated bacteria generally encountered in activated sludge for water treatment like Pseudomonas fluorescens P1 was studied. 2-chlorophenol, phenol and p-cresol were selected as the substrates for the study. Viable cell counts showed competitive interaction between the species on 2-chlorophenol and phenol. Specific growth rate of pure culture of R. erythropolis M1 was higher than P. fluorescens P1 on 2-chlorophenol. However, in mixed culture, P. fluorescens P1 showed higher growth rate. Degradation of phenol showed higher growth rate of R. erythropolis M1 both in pure and in mixed culture form. Degradation of p-cresol had shown similar counts for both populations indicating neutral type of interaction. This observation was substantiated by detecting the growth rate, where both cultures had similar growth rate in pure and in the mixed culture form. Rate of 2-chlorophenol degradation was higher when R. erythropolis M1 was used as the pure culture as compared to the degradation rates observed with the P. fluorescens P1 or with the mixed culture. However, in case of phenol and p-cresol, degradation by the mixed culture had resulted in higher degradation rates as compared to the degradation of the substrates by both the axenic cultures.  相似文献   

3.
Two new strains, Pseudomonas sp. TCP114 degrading 2,4,6-trichlorophenol (TCP) and Arthrobacter sp. CPR706 degrading 4-chlorophenol (4-CP), were isolated through a selective enrichment procedure. Both strains could also degrade phenol. The degradability of one component by a pure culture was strongly affected by the presence of other compounds in the medium. For example, when all three components (TCP, 4-CP, and phenol) were present in the medium, a pure culture of CPR706 could not degrade any of the components present. This restriction on degradability could be overcome by employing a defined mixed culture of the two strains. The mixed culture could degrade all three components in the mixture through cooperative activity. It was also demonstrated that the mixed culture could be immobilized by using calcium alginate for the semi-continuous degradation of the three-component mixture. Immobilization not only accelerates the degradation rate, but also enables reuse of the cell mass several times without losing the cells' degrading capabilities.  相似文献   

4.
The microbial degradation of phenol by pure and mixed cultures of Pseudomonas putida was studied in batch, phenol-stat, and continuous culture systems. In the continuous culture runs, both steady state and transient experiments were performed. From these experiments, a model for the kinetic behavior of the organisms was evolved and an analysis performed on the stability and dynamic behavior of pure and mixed cultures. The results indicate that it should be possible to achieve phenol removal from wastewaters down to levels of 1-2 ppm in a single state system. However, because of the effect of substrate inhibition on kinetic behavior of the microorganisms, long lasting transients can occur. The transient behavior of such systems cannot be solely determined from mumax or Ks parameters, but must include a consideration of the transient size and response characteristic of the organism.  相似文献   

5.
Anaerobic enrichment culture with thiocyanate as electron donor and nitrate as electron acceptor at 2 M NaCl inoculated with a mixture of sediments from hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in a selection of a binary consortium of moderately halophilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria (SOB) capable of complete denitrification of nitrate with thiosulfate as the electron donor. One consortium member, strain HRhD 3sp, was isolated into pure culture with nitrate and thiosulfate using a density gradient. This strain was responsible for the reduction of nitrate to nitrite in the consortium, while a second strain, HRhD 2, isolated under microoxic conditions with thiosulfate as substrate, was capable of anaerobic growth with nitrite and thiosulfate. Nitrite, either as substrate or as product, was already toxic at very low concentrations for both strains. As a result, optimal growth under anaerobic conditions could only be achieved within the consortium. On the basis of phylogenetic analysis, both organisms were identified as new lineages within the Gammaproteobacteria. As well as thiosulfate, strain HRhD 2 can also use thiocyanate as electron donor, representing a first halophilic SOB capable of growth with thiocyanate at 2–4 M NaCl. Product and enzymatic analysis identified the “carbonyl sulfide (COS) pathway” of primary thiocyanate degradation in this new species. On the basis of phenotypic and genetic analysis, strain HRhD 2 is proposed to be assigned to a new genus and species Thiohalophilus thiocyanoxidans. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Of the meat strains of streptobacteria, leuconostocs, Enterobacteriaceae and Brochothrix thermosphacta tested, only Hafnia alvei and Serratia liquefaciens showed diamine-producing potential during growth in pure culture on beef stored in vacuum packs at 1 degree C. Both organisms produced cadaverine at concentrations similar to those reported previously in naturally contaminated beef stored under the same conditions. Putrescine concentrations produced by the two organisms, however, were an order of magnitude lower. During the growth on beef of either H. alvei or S. liquefaciens in mixed culture with arginine-utilizing strains of streptobacteria, putrescine as well as cadaverine concentrations were similar to those detected in naturally contaminated samples.  相似文献   

7.
Of the meat strains of streptobacteria, leuconostocs, Enterobacteriaceae and Brochothrix thermosphacta tested, only Hafnia alvei and Serratia liquefaciens showed diamine-producing potential during growth in pure culture on beef stored in vacuum packs at 1°C. Both organisms produced cadaverine at concentrations similar to those reported previously in naturally contaminated beef stored under the same conditions. Putrescine concentrations produced by the two organisms, however, were an order of magnitude lower. During the growth on beef of either H. alvei or S. liquefaciens in mixed culture with arginine-utilizing strains of streptobacteria, putrescine as well as cadaverine concentrations were similar to those detected in naturally contaminated samples.  相似文献   

8.
Two different strains of Lactobacillus bulgaricus (ATCC-11842 and Microlife) and two strains of Streptococcus thermophilus (ATCC-19258 and Microlife) were grown anaerobically on 3% nonfat dry milk in pure and mixed culture using batch followed by fed batch culture. Samples were collected every 30 min. Concentrations of lactose, galactose, lactic acid, and other products present were measured using high pressure liquid chromatography. A spectrophotometric method from the literature was modified and used to determine microbial biomass concentrations. Relative cell numbers of the two organisms were measured microscopically in mixed culture. The results are presented in tabular form. S. thermophilus (Microlife) showed different growth characteristics compared to the other cultures. This culture utilized most of the galactose that was formed and produced greater amounts of lactic acid and biomass.  相似文献   

9.
A comparison was made of the abilities of various culture media to support the growth of a range of micro-organisms commonly recommended as control strains in tests for the sterility of immunological products. The effects of phenol, cresol, formaldehyde and thiomersal on the growth of these organisms were studied. Attention is drawn to some limitations of the current pharmacopoeial test methods.  相似文献   

10.
混合培养对固氮菌和纤维素分解菌生长及固氮的影响   总被引:8,自引:0,他引:8  
对筛选的自生固氮菌和纤维素分解菌进行混合培养 ,研究了菌数与菌液含氮量的变化情况 ,并与其单独培养进行了比较。实验证明 :在混合培养条件下 ,两种菌能相互利用、相互促进 ,混合培养液的菌数增加 ,固氮菌的固氮能力提高。这两种菌可混合培养制成混合菌剂。。  相似文献   

11.
This paper presents a kinetic study of two yeasts growing in pure and mixed batch cultures. Two winemaking strains were used: S. cerevisiae K1 possessing the K2 killer character and S. cerevisiae 522D sensitive to the K2 killer toxin. Initially the kinetics of growth of the two strains were analysed in pure culture. In this case, the kinetic profiles of biomass production have shown that the growth rate of the K1 strain is slightly superior to the 522D strain. During the fermentation, the viability for both populations was higher than 90%. Fermentations in mixed culture with an initial percentage in killer strain of 5 and 10% with respect to the total population were carried out. The results showed a more important decrease in the percentage of total viable yeasts when the initial concentration of killer yeast increased. However, the kinetic profiles of total biomass (killer plus sensitive yeasts) were very similar for both fermentations. A mathematical model was proposed to simulate the microbial growth of the killer and sensitive strain developing in pure and mixed cultures. This mathematical model consists in three main reactions: the evolution of the killer toxin in the culture medium, the duplication and the mortality rates for each microbial population. The results of the simulation appeared in agreement with the experimental data.  相似文献   

12.
Different techniques were tested for studying the synergism between the micro-organisms of sugary kefir grains. Agar cultures in Petri dishes did not give reproducible results. In sequential cultures, i.e. growing one organism, sterile filtering and then inoculating the other, 10 of 18 selected lactic acid bacteria/yeast pairs revealed stimulation of bacterial growth in a poor glucose medium. In mixed culture, Saccharomyces florentinus supported better survival of Lactobacillus hilgardii and a significant increase in lactic acid production; at the same time, the growth and alcoholic fermentation of S. florentinus were drastically reduced. The inter-relationships between these two strains were the same when immobilized in calcium alginate beads, even though total metabolite production was always lower than with free cells. The stimulation of Lact. hilgardii by Candida lambica in sequential culture was not confirmed in mixed culture, where the two organisms grew as in pure culture, and bacterial growth and lactic acid production were inhibited in the immobilized system.  相似文献   

13.
Biofilm formation and adherence properties of 13 bacterial strains commonly found in wastewater treatment systems were studied in pure and mixed cultures using a crystal violet microtiter plate assay. Four different culture media were used, wastewater, acetate medium, glucose medium and diluted nutrient broth. The medium composition strongly affected biofilm formation. All strains were able to form pure culture biofilms within 24 h in at least one of the tested culture media and three strains were able to form biofilm in all four culture media, namely Acinetobacter calcoaceticus ATCC 23055, Comamonas denitrificans 123 and Pseudomonas aeruginosa MBL 0199. The adherence properties assessed were initial adherence, cell surface hydrophobicity, and production of amyloid fibers and extracellular polymeric substances. The growth of dual-strain biofilms showed that five organisms formed biofilm with all 13 strains while seven formed no or only weak biofilm when cocultured. In dual-strain cultures, strains with different properties were able to complement each other, giving synergistic effects. Strongest biofilm formation was observed when a mixture of all 13 bacteria were grown together. These results on attachment and biofilm formation can serve as a tool for the design of tailored systems for the degradation of municipal and industrial wastewater.  相似文献   

14.
Four new Gram-positive, phenol-degrading strains were isolated from the rhizospheres of endemorelict plants Ramonda serbica and Ramonda nathaliae known to exude high amounts of phenolics in the soil. Isolates were designated Bacillus sp. PS1, Bacillus sp. PS11, Streptomyces sp. PS12, and Streptomyces sp. PN1 based on 16S rDNA sequence and biochemical analysis. In addition to their ability to tolerate and utilize high amounts of phenol of either up to 800 or up to 1,400 mg l−1 without apparent inhibition in growth, all four strains were also able to degrade a broad range of aromatic substrates including benzene, toluene, ethylbenzene, xylenes, styrene, halogenated benzenes, and naphthalene. Isolates were able to grow in pure culture and in defined mixed culture on phenol and on the mixture of BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds as a sole source of carbon and energy. Pure culture of Bacillus sp. PS11 yielded 1.5-fold higher biomass amounts in comparison to mixed culture, under all conditions. Strains successfully degraded phenol in the soil model system (2 g kg−1) within 6 days. Activities of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxygenase were detected and analyzed from the crude cell extract of the isolates. While all four strains use ortho degradation pathway, enzyme indicative of meta degradation pathway (catechol 2,3-dioxygenase) was also detected in Bacillus sp. PS11 and Streptomyces sp. PN1. Phenol degradation activities were induced 2 h after supplementation by phenol, but not by catechol. Catechol slightly inhibited activity of catechol 2,3-dioxygenase in strains PS11 and PN1.  相似文献   

15.
A mixed culture derived from soil and activated sludge organisms was used to degrade phenol which was inhibitory to microorganisms at higher concentrations. The purpose of the experiments was to determine the kinetic parameters governing growth of the organisms by measuring growth rates in batch culture. To maintain a constant inoculum for the experiments inoculum was taken from a continuously operating continuous culture. Two populations were studied corresponding to two separate residence times in the continuous culture apparatus. One contained predominantly filamentous organisms, the other nonfilamentous. Five kinetic models were applied to the data and the best kinetic parameters for each model were determined by nonlinear least squares techniques. The models were then evaluated for best relative fit to the data. No significant differences were found between the models on the basis of fit and so a choice was made on the grounds of simplicity. A model proposed by Haldane was chosen as the best. No function however gave a satisfactory fit at the highest growth rates obtained. This experimental maximum in the plot of growth rate against substrate concentration was very sharp.  相似文献   

16.
A biofilter treating alkylbenzene vapors was characterized for its optimal running conditions and kinetic parame-ters. Kinetics of the continuous biofilter were compared to batch kinetic data obtained with biofilm samples as well as with defined microbial consortia and with pure culture isolates from the biofilter. Both bacteria and fungi were present in the bioreactor. Five strains were isolated. Two bacteria, Bacillus and Pseudomonas, were shown to be dominant, as well as a Trichosporon strain which could, however, hardly grow on alkylbenzenes in pure culture. The remaining two strains were most often overgrown by the other three organisms in liquid phase batch cultures μ max, KS, KI values and biodegradation rates were calculated and compared for the difterent mixed and pure cultures. Since filter bed acidification was observed during biofiltration studies reaching a pH of about 4, experiments were also undertaken to study the influence of pH on performance of the different cultures. Biodegradation and growth were possible in all cases, over the pH range 3.5–7.0 at appreciable rates, both with mixed cultures and with pure bacterial cultures. Under certain conditions, microbial activity was even observed in the presence of alkylbenzenes down to pH 2.5 with mixed cultures, which is quite unusual and explains the ability of the present biocatalyst to remove alkylbenzenes with high efficiency in biofilters under acidic conditions.  相似文献   

17.
Abstract A gradostat (multistage chemostat) was used as a model of the rhizosphere. Investigations of the influence of NH4Cl and O2 gradients on a diazotrophic rhizosphere bacterium in pure culture and in mixed culture with non-diazotrophic strains were carried out. The diazotrophic isolate was able to grow on N2 and NH4Cl simultaneously. The diazotrophic isolate could successfully compete with the non-diazotrophic isolates in the presence and absence of NH4Cl in most experiments. Only minor amounts of nitrogen were transferred to the non-fixing organisms. A concept of transfer of nitrogen to non-fixing organisms is proposed.  相似文献   

18.
The biodegradation of chloroallyl alcohols by pure and mixed bacterial cultures was investigated. Only 2-chloroallyl alcohol and cis- and trans-3-chloroallyl alcohol served as growth substrate for pure cultures. The other chloroallyl alcohols could be cometabolically degraded during growth on 2-chloroallyl alcohol. Cometabolic degradation of trichloroallyl alcohol, which was the most recalcitrant congener, by a Pseudomonas strain isolated on 2-chloroallyl alcohol resulted in 60% dechlorination. Efficient degradation of a mixture of chloroallyl alcohols in continuous culture could only be achieved in the presence of a satellite population. The mixed culture degraded 99% of the total chloroallyl alcohols added with 71% chloride release. The culture contained strains with a new catabolic potential. The results indicate the importance of mixed cultures and genetic adaptation for efficient chloroallyl alcohol removal.  相似文献   

19.
The objective of this research work is to study the effect of physical and chemical mutagenesis on biological treatment of tannery saline wastewater (soak liquor) employing halotolerant bacterial strains. Four halotolerant bacterial strains isolated from saline sources were used. The strains were identified as Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Staphylococcus aureus, respectively. The isolates were found to grow well in medium containing 0–10% NaCl. At high saline concentration (>5%), the identified strains and their mixed consortia showed a low degrading efficiency of soak liquor (35–45%). UV light and nitrous acid mutagenesis were performed over the strains and the mutated strains were employed for degradation of soak liquor at high salinity level (6% by wt). Comparison of Chemical Oxygen Demand (COD) removal rates for both pure mutant isolates and mixed mutated consortia showed that nitrous acid mutagenesis resulted in degradation of 71% COD removal. Ultraviolet (UV) mutagenesis has no effect on degradation effectiveness. Biomass sludge (Mixed Liquor Volatile Suspended Solids) growth was also found to be high in nitrous acid treated strains.  相似文献   

20.
Of 15 strains of coliform bacteria, all isolated from human feces, 14 inhibited the growth of Shigella flexneri in mixed culture. In every case, when inhibition occurred, exponential growth of Shigella was interrupted in the mixed culture and the organisms entered into either a stationary or a death phase. None of the test coliform strains produced colicines active against Shigella. An analysis of mixed-culture environments at the time Shigella inhibition occurred revealed that the inhibition was not due to nutrient depletion nor to the development of adverse pH or oxidation-reduction potentials in themselves. In mixed cultures, the coliform strains produced formic and acetic acids in concentrations that inhibited Shigella growth. With one exception, the coliform strains also greatly reduced the culture medium. In average concentrations produced, the formic and acetic acids exerted a bactericidal effect on Shigella under the reduced conditions found in mixed cultures. The acids were only moderately toxic for the coliform strains under the same conditions. Results indicate that volatile acid production and concomitant reduction of the medium are the mechanisms by which coliform bacteria inhibit Shigella growth in mixed cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号