首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epithelial Na+ channel (alphabetagammaENaC) regulates salt and fluid homeostasis and blood pressure. Each ENaC subunit contains a PY motif (PPXY) that binds to the WW domains of Nedd4, a Hect family ubiquitin ligase containing 3-4 WW domains and usually a C2 domain. It has been proposed that Nedd4-2, but not Nedd4-1, isoforms can bind to and suppress ENaC activity. Here we challenge this notion and show that, instead, the presence of a unique WW domain (WW3*) in either Nedd4-2 or Nedd4-1 determines high affinity interactions and the ability to suppress ENaC. WW3* from either Nedd4-2 or Nedd4-1 binds ENaC-PY motifs equally well (e.g. Kd approximately 10 microm for alpha- or betaENaC, 3-6-fold higher affinity than WW4), as determined by intrinsic tryptophan fluorescence. Moreover, dNedd4-1, which naturally contains a WW3* instead of WW2, is able to suppress ENaC function equally well as Nedd4-2. Homology models of the WW3*.betaENaC-PY complex revealed that a Pro and Ala conserved in all WW3*, but not other Nedd4-WW domains, help form the binding pocket for PY motif prolines. Extensive contacts are formed between the betaENaC-PY motif and the Pro in WW3*, and the small Ala creates a large pocket to accommodate the peptide. Indeed, mutating the conserved Pro and Ala in WW3* reduces binding affinity 2-3-fold. Additionally, we demonstrate that mutations in PY motif residues that form contacts with the WW domain based on our previously solved structure either abolish or severely reduce binding affinity to the WW domain and that the extent of binding correlates with the level of ENaC suppression. Independently, we show that a peptide encompassing the PY motif of sgk1, previously proposed to bind to Nedd4-2 and alter its ability to regulate ENaC, does not bind (or binds poorly) the WW domains of Nedd4-2. Collectively, these results suggest that high affinity of WW domain-PY-motif interactions rather than affiliation with Nedd4-1/Nedd-2 is critical for ENaC suppression by Nedd4 proteins.  相似文献   

2.
Muscle synaptogenesis in Drosophila melanogaster requires endocytosis of Commissureless (Comm), a binding partner for the ubiquitin ligase dNedd4. We investigated whether dNedd4 and ubiquitination mediate this process. Here we show that Comm is expressed in intracellular vesicles in the muscle, whereas Comm bearing mutations in the two PY motifs (L/PPXY) responsible for dNedd4 binding [Comm(2PY-->AY)], or bearing Lys-->Arg mutations in all Lys residues that serve as ubiquitin acceptor sites [Comm(10K-->R)], localize to the muscle surface, suggesting they cannot endocytose. Accordingly, aberrant muscle innervation is observed in the Comm(2PY-->AY) and Comm(10K-->R) mutants expressed early in muscle development. Similar muscle surface accumulation of Comm and innervation defects are observed when dNedd4 is knocked down by double-stranded RNA interference in the muscle, in dNedd4 heterozygote larvae, or in muscles overexpressing catalytically inactive dNedd4. Expression of the Comm mutants fused to a single ubiquitin that cannot be polyubiquitinated and mimics monoubiquitination [Comm(2PY-->AY)-monoUb or Comm(10K-->R)-monoUb] prevents the defects in both Comm endocytosis and synaptogenesis, suggesting that monoubiquitination is sufficient for Comm endocytosis in muscles. Expression of the Comm mutants later in muscle development, after synaptic innervation, has no effect. These results demonstrate that dNedd4 and ubiquitination are required for Commissureless endocytosis and proper neuromuscular synaptogenesis.  相似文献   

3.
Smurf2 is an E3 ubiquitin ligase that drives degradation of the transforming growth factor-beta receptors and other targets. Recognition of the receptors by Smurf2 is accomplished through an intermediary protein, Smad7. Here we have demonstrated that the WW3 domain of Smurf2 can directly bind to the Smad7 polyproline-tyrosine (PY) motif. Of particular interest, the highly conserved WW domain binding site Trp, which interacts with target PY motifs, is a Phe in the Smurf2 WW3 domain. To examine this interaction, the solution structure of the complex between the Smad7 PY motif region (ELESPPPPYSRYPMD) and the Smurf2 WW3 domain was determined. The structure reveals that, in addition to binding the PY motif, the WW3 domain binds six residues C-terminal to the PY motif (PY-tail). Although the Phe in the WW3 domain binding site decreases affinity relative to the canonical Trp, this is balanced by additional interactions between the PY-tail and the beta1-strand and beta1-beta2 loop of the WW3 domain. The interaction between the Smurf2 WW3 domain and the Smad7 PY motif is the first example of PY motif recognition by a WW domain with a Phe substituted for the binding site Trp. This unusual interaction allows the Smurf2 WW3 domain to recognize a subset of PY motif-containing proteins utilizing an expanded surface to provide specificity.  相似文献   

4.
Nedd4 is a ubiquitin protein ligase composed of a C2 domain, three (or four) WW domains and a ubiquitin ligase Hect domain. Nedd4 was demonstrated to bind the epithelial sodium channel (alphabetagammaENaC), by association of its WW domains with PY motifs (XPPXY) present in each ENaC subunit, and to regulate the cell surface stability of the channel. The PY motif of betaENaC is deleted or mutated in Liddle syndrome, a hereditary form of hypertension caused by elevated ENaC activity. Here we report the solution structure of the third WW domain of Nedd4 complexed to the PY motif-containing region of betaENaC (TLPIPGTPPPNYDSL, referred to as betaP2). A polyproline type II helical conformation is adopted by the PPPN sequence. Unexpectedly, the C-terminal sequence YDSL forms a helical turn and both the tyrosine and the C-terminal leucine contact the WW domain. This is unlike other proline-rich peptides complexed to WW domains, which bind in an extended conformation and lack molecular interactions with residues C-terminal to the tyrosine or the structurally equivalent residue in non-PY motif WW domain targets. The Nedd4 WW domain-ENaC betaP2 peptide structure expands our understanding of the mechanisms involved in WW domain-ligand recognition and the molecular basis of Liddle syndrome.  相似文献   

5.
The cardiac voltage-gated Na+ channel H1, involved in the generation of cardiac action potential, contains a C-terminal PY motif (xPPxY). Since PY motifs are known ligands to WW domains, we investigated their role for H1 regulation and the possible involvement of the WW domain containing ubiquitin-protein ligase Nedd4, taking advantage of the Xenopus oocyte system. Mutation of the PY motif leads to higher peak currents when compared to wild-type channel. Moreover, co-expression of Nedd4 reduced the peak currents, whereas an enzymatically inactive Nedd4 mutant increased them, likely by competing with endogenous Nedd4. The effect of Nedd4 was not observed in the PY motif mutated channel or in the skeletal muscle voltage-gated Na+ channel, which lacks a PY motif. We conclude that H1 may be regulated by Nedd4 depending on WW-PY interaction, and on an active ubiquitination site.  相似文献   

6.
Seo MD  Park SJ  Kim HJ  Lee BJ 《FEBS letters》2007,581(1):65-70
Epstein-Barr virus latency is maintained by the latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. The cytoplasmic N-terminal domain of LMP2A is composed of 119 amino acids. The N-terminal domain of LMP2A (LMP2A NTD) contains two PY motifs (PPPPY) that interact with the WW domains of Nedd4 family ubiquitin-protein ligases. Based on our analysis of NMR data, we found that the LMP2A NTD adopts an overall random-coil structure in its native state. However, the region between residues 60 and 90 was relatively ordered, and seemed to form the hydrophobic core of the LMP2A NTD. This region resides between two PY motifs and is important for WW domain binding. Mapping of the residues involved in the interaction between the LMP2A NTD and WW domains was achieved by chemical shift perturbation, by the addition of WW2 and WW3 peptides. Interestingly, the binding of the WW domains mainly occurred in the hydrophobic core of the LMP2A NTD. In addition, we detected a difference in the binding modes of the two PY motifs against the two WW peptides. The binding of the WW3 peptide caused the resonances of five residues (Tyr(60), Glu(61), Asp(62), Trp(65), and Gly(66)) just behind the N-terminal PY motif of the LMP2A NTD to disappear. A similar result was obtained with WW2 binding. However, near the C-terminal PY motif, the chemical shift perturbation caused by WW2 binding was different from that due to WW3 binding, indicating that the residues near the PY motifs are involved in selective binding of WW domains. The present work represents the first structural study of the LMP2A NTD and provides fundamental structural information about its interaction with ubiquitin-protein ligase.  相似文献   

7.
WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.  相似文献   

8.
9.
Drosophila Nedd4 (dNedd4) is a HECT ubiquitin ligase with two main splice isoforms: dNedd4-short (dNedd4S) and -long (dNedd4Lo). DNedd4Lo has a unique N-terminus containing a Pro-rich region. We previously showed that whereas dNedd4S promotes neuromuscular synaptogenesis, dNedd4Lo inhibits it and impairs larval locomotion. To delineate the cause of the impaired locomotion, we searched for binding partners to the N-terminal unique region of dNedd4Lo in larval lysates using mass spectrometry and identified Amphiphysin (dAmph). dAmph is a postsynaptic protein containing SH3-BAR domains and regulates muscle transverse tubule (T-tubule) formation in flies. We validated the interaction by coimmunoprecipitation and showed direct binding between dAmph-SH3 domain and dNedd4Lo N-terminus. Accordingly, dNedd4Lo was colocalized with dAmph postsynaptically and at muscle T-tubules. Moreover, expression of dNedd4Lo in muscle during embryonic development led to disappearance of dAmph and impaired T-tubule formation, phenocopying amph-null mutants. This effect was not seen in muscles expressing dNedd4S or a catalytically-inactive dNedd4Lo(C→A). We propose that dNedd4Lo destabilizes dAmph in muscles, leading to impaired T-tubule formation and muscle function.  相似文献   

10.
Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) is an E3 ubiquitin ligase that interacts with and negatively regulates the epithelial Na+ channel (ENaC). The WW domains of Nedd4-1 bind to the ENaC subunits via recognition of PY motifs. Human Nedd4-1 (hNedd4-1) contains four WW domains with the third domain (WW3*) showing the strongest affinity to the PY motif. To understand the mechanism underlying this binding affinity, we have carried out NMR structural and dynamics analyses of the hNedd4-1 WW3* domain in complex with a peptide comprising the C-terminal tail of the human ENaC α-subunit. The structure reveals that the peptide interacts in a similar manner to other WW domain–ENaC peptide structures. Crucial interactions that likely provide binding affinity are the broad XP groove facilitating additional contacts between the WW3* domain and the peptide, compared to similar complexes, and the large surface area buried (83 Å2) between R430 (WW3*) and L647′ (αENaC). This corroborates the model-free analysis of the 15N backbone relaxation data, which showed that R430 is the most rigid residue in the domain (S2 = 0.90 ± 0.01). Carr–Purcell–Meiboom–Gill relaxation dispersion analysis identified two different conformational exchange processes on the μs–ms time-scale. One of these processes involves residues located at the peptide binding interface, suggesting conformational exchange may play a role in peptide recognition. Thus, both structural and dynamic features of the complex appear to define the high binding affinity. The results should aid interpretation of biochemical data and modeling interfaces between Nedd4-1 and other interacting proteins.  相似文献   

11.
The E3 ubiquitin ligase Itch mediates the degradation of the p63 protein. Itch contains four WW domains which are pivotal for the substrate recognition process. Indeed, this domain is implicated in several signalling complexes crucially involved in human diseases including Muscular Dystrophy, Alzheimer's Disease, and Huntington Disease. WW domains are highly compact protein-protein binding modules that interact with short proline-rich sequences. The four WW domains present in Itch belong to the Group I type, which binds polypeptides with a PY motif characterized by a PPxY consensus sequence, where x can be any residue. Accordingly, the Itch-p63 interaction results from a direct binding of Itch-WW2 domain with the PY motif of p63. Here, we report a structural analysis of the Itch-p63 interaction by fluorescence, CD and NMR spectroscopy. Indeed, we studied the in vitro interaction between Itch-WW2 domain and p63(534-551), an 18-mer peptide encompassing a fragment of the p63 protein including the PY motif. In addition, we evaluated the conformation and the interaction with Itch-WW2 of a site specific mutant of p63, I549T, that has been reported in both Hay–Wells syndrome and Rapp–Hodgkin syndrome. Based on our results, we propose an extended PPxY motif for the Itch recognition motif (P-P-P-Y-x(4)-[ST]-[ILV]), which includes these C-terminal residues to the PPxY motif.  相似文献   

12.
HECT domain E3 ubiquitin ligases of the NEDD4 family control many cellular processes, but their regulation is poorly understood. They contain multiple WW domains that recognize PY elements. Here, we show that the small PY‐containing membrane proteins, NDFIP1 and NDFIP2 (NEDD4 family‐interacting proteins), activate the catalytic activity of ITCH and of several other HECT ligases by binding to them. This releases them from an autoinhibitory intramolecular interaction, which seems to be characteristic of these enzymes. Activation of ITCH requires multiple PY–WW interactions, but little else. Binding of NDFIP proteins is highly dynamic, potentially allowing activated ligases to access other PY‐containing substrates. In agreement with this, NDFIP proteins promote ubiquitination in vivo both of Jun proteins, which have a PY motif, and of endophilin, which does not.  相似文献   

13.
Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.  相似文献   

14.
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of alpha, beta, and gamma subunits. The carboxyl terminus of each ENaC subunit contains a PPxY motif which is necessary for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddle's syndrome where mutations delete or alter the PY motif of either the beta or gamma subunits, results in increased ENaC activity. We have recently shown using the whole-cell patch clamp technique that Nedd4 mediates the ubiquitin-dependent down-regulation of Na+ channel activity in response to increased intracellular Na+. In this paper, we demonstrate that WW domains 2 and 3 bind alpha-, beta-, and gamma-ENaC with varying degrees of affinity, whereas WW domain 1 does not bind to any of the subunits. We further show using whole-cell patch clamp techniques that Nedd4-mediated down-regulation of ENaC in mouse mandibular duct cells involves binding of the WW domains of Nedd4 to three distinct sites. We propose that Nedd4-mediated down-regulation of Na+ channels involves the binding of WW domains 2 and 3 to the Na+ channel and of WW domain 1 to an unknown associated protein.  相似文献   

15.

Background

Neuromuscular (NM) synaptogenesis is a tightly regulated process. We previously showed that in flies, Drosophila Nedd4 (dNedd4/dNedd4S) is required for proper NM synaptogenesis by promoting endocytosis of commissureless from the muscle surface, a pre-requisite step for muscle innervation. DNedd4 is an E3 ubiquitin ligase comprised of a C2-WW(x3)-Hect domain architecture, which includes several splice isoforms, the most prominent ones are dNedd4-short (dNedd4S) and dNedd4-long (dNedd4Lo).

Methodology/Principal Findings

We show here that while dNedd4S is essential for NM synaptogenesis, the dNedd4Lo isoform inhibits this process and causes lethality. Our results reveal that unlike dNedd4S, dNedd4Lo cannot rescue the lethality of dNedd4 null (DNedd4T121FS) flies. Moreover, overexpression of UAS-dNedd4Lo specifically in wildtype muscles leads to NM synaptogenesis defects, impaired locomotion and larval lethality. These negative effects of dNedd4Lo are ameliorated by deletion of two regions (N-terminus and Middle region) unique to this isoform, and by inactivating the catalytic activity of dNedd4Lo, suggesting that these unique regions, as well as catalytic activity, are responsible for the inhibitory effects of dNedd4Lo on synaptogenesis. In accord with these findings, we demonstrate by sqRT-PCR an increase in dNedd4S expression relative to the expression of dNedd4Lo during embryonic stages when synaptogenesis takes place.

Conclusion/Significance

Our studies demonstrate that splice isoforms of the same dNedd4 gene can lead to opposite effects on NM synaptogenesis.  相似文献   

16.
The matrix (M) proteins of vesicular stomatitis virus (VSV) and rabies virus (RV) play a key role in both assembly and budding of progeny virions. A PPPY motif (PY motif or late-budding domain) is conserved in the M proteins of VSV and RV. These PY motifs are important for virus budding and for mediating interactions with specific cellular proteins containing WW domains. The PY motif and flanking sequences of the M protein of VSV were used as bait to screen a mouse embryo cDNA library for cellular interactors. The mouse Nedd4 protein, a membrane-localized ubiquitin ligase containing multiple WW domains, was identified from this screen. Ubiquitin ligase Rsp5, the yeast homolog of Nedd4, was able to interact both physically and functionally with full-length VSV M protein in a PY-dependent manner. Indeed, the VSV M protein was multiubiquitinated by Rsp5 in an in vitro ubiquitination assay. To demonstrate further that ubiquitin may be involved in the budding process of rhabdoviruses, proteasome inhibitors (e.g., MG132) were used to decrease the level of free ubiquitin in VSV- and RV-infected cells. Viral titers measured from MG132-treated cells were reproducibly 10- to 20-fold lower than those measured from untreated control cells, suggesting that free ubiquitin is important for efficient virus budding. Last, release of a VSV PY mutant was not inhibited in the presence of MG132, signifying that the functional L domain of VSV is required for the inhibitory effect exhibited by MG132. These data suggest that the cellular ubiquitin-proteasome machinery is involved in the budding process of VSV and RV.  相似文献   

17.
Liddle's syndrome is a form of inherited hypertension linked to mutations in the genes encoding the epithelial Na+ channel (ENaC). These mutations alter or delete PY motifs involved in protein-protein interactions with a ubiquitin-protein ligase, Nedd4. Here we show that Na+ transporting cells, derived from mouse cortical collecting duct, express two Nedd4 proteins with different structural organization and characteristics of ENaC regulation: 1) the classical Nedd4 (herein referred to as Nedd4-1) containing one amino-terminal C2, three WW, and one HECT-ubiquitin protein ligase domain and 2) a novel Nedd4 protein (Nedd4-2), homologous to Xenopus Nedd4 and comprising four WW, one HECT, yet lacking a C2 domain. Nedd4-2, but not Nedd4-1, inhibits ENaC activity when coexpressed in Xenopus oocytes and this property correlates with the ability to bind to ENaC, as only Nedd4-2 coimmunoprecipitates with ENaC. Furthermore, this interaction depends on the presence of at least one PY motif in the ENaC complex and on WW domains 3 and 4 in Nedd4-2. Thus, these results suggest that the novel suppressor protein Nedd4-2 is the regulator of ENaC and hence a potential susceptibility gene for arterial hypertension.  相似文献   

18.
The matrix (M) protein of rhabdoviruses has been shown to play a key role in virus assembly and budding; however, the precise mechanism by which M mediates these processes remains unclear. We have associated a highly conserved, proline-rich motif (PPxY or PY motif, where P denotes proline, Y represents tyrosine, and x denotes any amino acid) of rhabdoviral M proteins with a possible role in budding mediated by the M protein. Point mutations that disrupt the PY motif of the M protein of vesicular stomatitis virus (VSV) have no obvious effect on membrane localization of M but instead lead to a decrease in the amount of M protein released from cells in a functional budding assay. Interestingly, the PPxY sequence within rhabdoviral M proteins is identical to that of the ligand which interacts with WW domains of cellular proteins. Indeed, results from two in vitro binding assays demonstrate that amino acids 17 through 33 and 29 through 44, which contain the PY motifs of VSV and rabies virus M proteins, respectively, mediate interactions with WW domains of specific cellular proteins. Point mutations that disrupt the consensus PY motif of VSV or rabies virus M protein result in a significant decrease in their ability to interact with the WW domains. These properties of the PY motif of rhabdovirus M proteins are strikingly analogous to those of the late (L) budding domain identified in the gag-specific protein p2b of Rous sarcoma virus. Thus, it is possible that rhabdoviruses may usurp host proteins to facilitate the budding process and that late stages in the budding process of rhabdoviruses and retroviruses may have features in common.  相似文献   

19.
Liddle综合征是一种常染色体显性、盐敏感型的高血压综合征,其分子发病机制研究认为是上皮钠离子通道(epithelial Na+channel,ENaC)的β亚基或γ亚基的胞质侧羧基端区域低频率的点突变或缺失突变导致肾远曲小管钠离子重吸收增加.本研究提出了一种从分子水平上治疗Liddle综合征的设想,即构建一种可识别Liddle综合征患者中ENaC蛋白突变的PY模体的人工泛素连接酶E3,使其结合并降解突变的ENaC蛋白,从而使肾远曲小管上皮细胞膜上ENaC的表达数量和活性恢复.而识别PY突变体的E3,可通过用患者中的PY突变体筛选随机多肽文库获得与之结合的随机肽段,用其替换PY模体天然配体蛋白Nedd4的WW结构域,从而得到一个新的人工E3.本研究中以一种Liddle综合征突变型Y620H为诱饵蛋白,筛选新型随机多肽文库,获得了1个至少能与2种PY突变体(Y620H和P618L)特异性结合的随机肽段,为进一步构建可降解ENaC突变体的人工E3积累了重要的实验数据.  相似文献   

20.
Epstein-Barr virus (EBV) is a human herpesvirus which establishes a lifelong latent infection in B lymphocytes. Latent membrane protein 2A (LMP2A) is expressed in both humans with EBV latent infection and EBV immortalized cell lines grown in culture. Previous studies have shown that the amino terminal domain of LMP2A, which contains eight tyrosines, associates with a variety of cellular proteins via SH2-phosphotyrosine interactions. Also contained within the LMP2A amino terminal domain are five proline-rich regions, three of which possess the PxxP core consensus sequence required for interacting with SH3 domains and two of which possess the PPxY core consensus sequence (PY motif) required for interacting with class I type WW domains. In the current study, the ability of LMP2A to interact with either modular SH3 or WW domains was investigated. The results of these studies indicate that the two LMP2A PY motifs interact strongly with representative class I WW domains, but not with representative class II WW domains. In contrast, no interactions were detected between LMP2A and any of the five different SH3 domains tested. These data demonstrate that a subset of the conserved proline-rich motifs within the amino terminus of LMP2A can potentially mediate interactions with cellular proteins and may play a role in EBV-mediated latency and/or transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号