首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Kim D  Guengerich FP 《Biochemistry》2004,43(4):981-988
Cytochrome P450 (P450) 1A2 is the major enzyme involved in the metabolism of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ) and other heterocyclic arylamines and their bioactivation to mutagens. Random mutant libraries of human P450 1A2, in which mutations were made throughout the entire open reading frame, were screened with Escherichia coli DJ3109pNM12, a strain designed to bioactivate MeIQ and detect mutagenicity of the products. Mutant clones with enhanced activity were confirmed using quantitative measurement of MeIQ N-hydroxylation. Three consecutive rounds of random mutagenesis and screening were performed and yielded a highly improved P450 1A2 mutant, SF513 (E225N/Q258H/G437D), with >10-fold increased MeIQ activation based on the E. coli genotoxicity assay and 12-fold enhanced catalytic efficiency (k(cat)/K(m)) in steady-state N-hydroxylation assays done with isolated membrane fractions. SF513 displayed selectively enhanced activity for MeIQ compared to other heterocyclic arylamines. The enhanced catalytic activity was not attributed to changes in any of several individual steps examined, including substrate binding, total NADPH oxidation, or H(2)O(2) formation. Homology modeling based on an X-ray structure of rabbit P450 2C5 suggested that the E225N and Q258H mutations are located in the F-helix and G-helix, respectively, and that the G437D mutation is in the "meander" region, apparently rather distant from the substrate. In summary, the approach generated a mutant enzyme with selectively elevated activity for a single substrate, even to the extent of a difference of a single methyl group, and several mutations had interacting roles in the development of the selected mutant protein.  相似文献   

2.
3.
Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The DNA which can restore UV mutability to a umuD44 strain and to a umuC122::Tn5 strain of E. coli has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the cloned DNA potentially encoded proteins with calculated molecular weights of 15,523 and 47,726 and was an analog of the E. coli umuDC operon. We have termed this cloned DNA the samAB (for Salmonella mutagenesis) operon and tentatively referred to the umuDC operon of S. typhimurium LT2 (C. M. Smith, W. H. Koch, S. B. Franklin, P. L. Foster, T. A. Cebula, and E. Eisenstadt, J. Bacteriol. 172:4964-4978, 1990; S. M. Thomas, H. M. Crowne, S. C. Pidsley, and S. G. Sedgwick, J. Bacteriol. 172:4979-4987, 1990) as the umuDCST operon. The samAB operon is 40% diverged from the umuDCST operon at the nucleotide level. Among five umuDC-like operons so far sequenced, i.e., the samAB, umuDCST, mucAB, impAB, and E. coli umuDC operons, the samAB operon shows the highest similarity to the impAB operon of TP110 plasmid while the umuDCST operon shows the highest similarity to the E. coli umuDC operon. Southern hybridization experiments indicated that (i) S. typhimurium LT2 and TA1538 had both the samAB and the umuDCST operons and (ii) the samAB operon was located in a 60-MDa cryptic plasmid. The umuDCST operon is present in the chromosome. The presence of the two homologous but different umuDC operons may be involved in the poor mutability of S. typhimurium by UV and chemical mutagens.  相似文献   

4.
In order to develop a new tester strain detecting environmental promutagens and procarcinogens, we introduced two plasmids into Salmonella typhimurium TA1535; one contains the cDNAs of human cytochrome P450 (P450 or CYP) 1A2 and NADPH-P450 reductase and the other (pOA101) a umuC"lacZ fusion gene. The newly developed tester strain, S. typhimurium OY1001/1A2, was found to express P450 at a level of 0.15 nmol/ml in whole cell culture. Membrane fractions, when isolated from this tester strain, contained 0.04 P450 nmol/mg protein and a reductase activity of 170 nmol cytochrome c reduced/min/mg protein and were active in catalyzing CYP1A2-dependent 7-ethoxyresorufin O-deethylation and metabolic activation of heterocyclic aromatic amines to DNA-damaging products in a conventional tester S. typhimurium NM2009 strain, only when NADPH was added as a reducing equivalent. In the OA1002/1A2 strain, heterocyclic aromatic amines (e.g., IQ, MeIQ, and MeIQx) were found to be activated to reactive metabolites that cause induction of umuC gene expression in a dose-dependent manner, without addition of external NADPH. These results indicate that the newly established strain can be of use to detect mutagenic and carcinogenic potencies of environmental chemicals without addition of metabolic activation system.  相似文献   

5.
Characterization of the umu-complementing operon from R391.   总被引:1,自引:0,他引:1       下载免费PDF全文
In addition to conferring resistances to antibiotics and heavy metals, certain R factors carry genes involved in mutagenic DNA repair. These plasmid-encoded genes are structurally and functionally related to the chromosomally encoded umuDC genes of Escherichia coli and Salmonella typhimurium. Three such plasmid operons, mucAB, impCAB, and samAB, have been characterized at the molecular level. Recently, we have identified three additional umu-complementing operons from IncJ plasmid R391 and IncL/M plasmids R446b and R471a. We report here the molecular characterization of the R391 umu-complementing operon. The nucleotide sequence of the minimal R plasmid umu-complementing (rum) region revealed an operon of two genes, rumA(R391) and rumB(R391), with an upstream regulatory signal strongly resembling LexA-binding sites. Phylogenetic analysis revealed that the RumAB(R391) proteins are approximately equally diverged in sequence from the chromosomal UmuDC proteins and the other plasmid-encoded Umu-like proteins and represent a new subfamily. Genetic characterization of the rumAB(R391) operon revealed that in recA+ and recA1730 backgrounds, the rumAB(R391) operon was phenotypically indistinguishable from mucAB. In contrast, however, the rumAB(R391) operon gave levels of mutagenesis that were intermediate between those given by mucAB and umuDC in a recA430 strain. The latter phenotype was shown to correlate with the reduced posttranslational processing of the RumA(R391) protein to its mutagenically active form, RumA'(R391). Thus, the rumAB(R391) operon appears to possess characteristics that are reminiscent of both chromosome and plasmid-encoded umu-like operons.  相似文献   

6.
Random mutagenesis is an approach that has the potential to provide useful information about cytochrome P450 (P450) enzymes but has not been extensively used to date. We applied our previously developed systems for generation of random libraries of human P450 1A2 with the putative substrate recognition sequences mutated (individual residues) and an Escherichia coli genotoxity assay involving reversion to lac prototrophy as a response to activation of the heterocyclic amine 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ). A total of 27 mutants were screened from 6000 clones, a small portion of the library. The sequence changes were identified, and E. coli membranes containing each P450 (with NADPH-P450 reductase expressed using a bicistronic vector) were used to determine kcat and Km values for 7-ethoxyresorufin and phenacetin O-deethylation and the (in vitro) activation of MeIQ with another bacterial genotoxicity system (Salmonella typhimurium umu). Within each assay, the values of kcat/Km varied by 2 orders of magnitude, and in some cases these parameters were 3-4-fold higher than for the native enzyme. The profiles of the mutants varied considerably for the three different reactions. Some of the mutants in the Asp-320 region may be compared with site-directed mutants of rat P450 1A2 already reported, with several differences noted. Other mutants have not been studied before in human P450 1A2 or homologues and are of interest; i.e., all Phe-226 mutants showed considerably reduced activity but Glu-225 mutants had increased catalytic activities. In principle, this approach may be applied to random mutagenesis of any enzyme that converts chemicals to mutagens and can be expressed in bacteria.  相似文献   

7.
Kang IH  Kim HJ  Oh H  Park YI  Dong MS 《Mutation research》2004,545(1-2):37-47
Heterocyclic amines (HCAs) produced by cooking meat products at high temperatures are promutagens that are activated by cytochrome P450 (CYP) lA2. Using a newly developed Salmonella typhimurium TA1538/1A2bc-b5 strain, we tested the effect of quercetin and naringenin on the mutagenicity of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). TA1538/1A2bc-b5 bears two plasmids, one expressing human CYP1A2 and NADPH-P450 reductase (NPR), and the other plasmid which expresses human cytochrome b5 (cyp b5). TA1538/1A2bc-b5 cells showed high activities of 7-ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) associated with CYP1A2 and are very sensitive to mutagenesis induced by several HCAs. MeIQ was found to be the strongest mutagen among the HCAs tested in this system. Mutagenicity of MeIQ was enhanced 50 and 42% by quercetin at 0.1 and 1 microM, respectively, but suppressed 82 and 96% at 50 and 100 microM. Naringenin also increased the MeIQ-induced mutation about 37 and 22% at 0.1 and 1 microM, but suppressed it 32 and 63% at 50 and 100 microM concentrations, respectively, in TA 1538/1A2bc-b5 cells. Thus, they stimulated the MeIQ induced mutation at low concentrations, but strongly suppressed it at high concentrations. This biphasic effect of flavonoids was due to the stimulation or the inhibition of CYP1A2 activity in a dose-dependent manner judging by the activities of EROD or MROD in the Salmonella cells. These results indicate that quercetin and naringenin can exhibit inhibitory or stimulating effects on CYP1A2 mediated mutagenesis by MeIQ, depending on their concentrations.  相似文献   

8.
Most mutagenesis by UV and many chemicals in Escherichia coli requires the products of the umuDC operon or an analogous plasmid-derived operon mucAB. Activated RecA protein is also required for, or enhances, this process. MucA and UmuD proteins share homology with the LexA protein, suggesting that they might interact with the RecA protein as LexA does. We used oligonucleotide-directed mutagenesis to alter a site in MucA homologous to the Ala-Gly cleavage site of LexA. The mutation, termed mucA101(Glu26), results in a change of Gly26 of MucA to Glu26. A lexA(Def) recA441 umuC122::Tn5 strain carrying a mucA101(Glu26)B+ plasmid did not exhibit the greatly increased frequency of spontaneous mutagenesis in response to RecA activation that a strain carrying a mucA+B+ plasmid did but retained a basal recA-dependent ability to confer increased spontaneous mutagenesis that was independent of the state of RecA activation. These results are consistent with a model in which RecA plays two distinct roles in mutagenesis apart from its role in the cleavage of LexA. A pBR322-derived plasmid carrying mucA+B+, but not one carrying mucA101(Glu26)B+, inhibited the UV induction of SOS genes, suggesting that MucA+ and MucA(Glu26) proteins may have different abilities to compete with LexA for activated RecA protein. The spectrum of UV-induced mutagenesis was also altered in strains carrying the mucA101(Glu26) mutation. These results are consistent with the hypothesis that activated RecA protein interacts with wild-type MucA protein, possibly promoting proteolytic cleavage, and that this interaction is responsible for facilitating certain mutagenic processes.  相似文献   

9.
10.
Multicopy plasmids carrying either the umuDC operon of Escherichia coli or its analog mucAB operon, were introduced into Ames Salmonella strains in order to analyze the influence of UmuDC and MucAB proteins on repair and mutability after UV irradiation. It was found that in uvr+ bacteria, plasmid pICV80:mucAB increased the frequency of UV-induced His+ revertants whereas pSE117:umuDC caused a smaller increase in UV mutagenesis. In delta uvrB bacteria, the protective role of pSE117 against UV killing was weak, and there was a great reduction in the mutant yield. In contrast, in these cells, pICV80 led to a large increase in both cell survival and mutation frequency. These results suggest that in Salmonella, as in E. coli, MucAB proteins mediate UV mutagenesis more efficiently than UmuDC proteins do. Plasmid pICV84:umuD+ C- significantly increased UV mutagenesis of TA2659: delta uvrB cells whereas in them, pICV77:mucA+ B- had no effect on mutability indicating the presence in Salmonella TA2659 of a gene functionally homologous to umuC.  相似文献   

11.
Female BALB/c mice were fed a low fat diet (1% safflower oil, by weight) or one supplemented with 25% (by weight) of beef fat or olive oil. The abilities of these diets to modify the in vitro and in vivo hepatic conversion of the dietary carcinogens aflatoxin B1, 2-amino-3, 4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) to bacterial mutagens was evaluated. Dietary olive oil appeared to increase the metabolism of both MeIQ and Trp-P-2 to bacterial mutagens in vivo using the intrasanguineous host-mediated assay. Feeding mice either of the high-fat diets increased hepatic conversion of these two compounds to bacterial mutagens in vitro. Dietary fat had no effect on the metabolism of aflatoxin B1. Subsequent experiments suggested that the in vivo effects of dietary olive oil on MeIQ and Trp-P-2 mutagenesis were due to the induction of hepatic enzyme activities rather than to increased rates of uptake of the carcinogen from the gut-lumen.  相似文献   

12.
The umuDC operon of Escherichia coli, a member of the SOS regulon, is required for SOS mutagenesis. Following the posttranslational processing of UmuD to UmuD' by RecA-mediated cleavage, UmuD' acts in concert with UmuC, RecA, and DNA polymerase III to facilitate the process of translesion synthesis, which results in the introduction of mutations. Constitutive expression of the umuDC operon causes an inhibition of growth at 30 degrees C (cold sensitivity). The umuDC-dependent physiological phenomenon manifested as cold-sensitive growth is shown to differ from SOS mutagenesis in two respects. Intact UmuD, the form inactive in SOS mutagenesis, confers a significantly higher degree of cold sensitivity in combination with UmUC than does UmuD'. In addition, umuDC-mediated cold sensitivity, unlike SOS mutagenesis, does not require recA function. Since the RecA protein mediates the autodigestion of UnmD to UmuD', this finding supports the conclusion that intact UmuD is capable of conferring cold sensitivity in the presence of UmuC. The degree of inhibition of growth at 30 degrees C correlates with the levels of UmuD and UmuC, which are the only two SOS-regulated proteins required to observe cold sensitivity. Analysis of the cellular morphology of strains that exhibit cold sensitivity for growth led to the finding that constitutive expression of the umuDC operon causes a novel form of sulA- and sfiC-independent filamentation at 30 degrees C. This filamentation is observed in a strain constitutively expressing the single, chromosomal copy of umuDC and can be suppressed by overexpression of the ftsQAZ operon.  相似文献   

13.
The food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) were studied for their genotoxic potential using hepatocytes isolated from untreated and Aroclor 1254 (PCB) pretreated rats as an activation system. Monolayers of hepatocytes co-incubated with Salmonella typhimurium TA98 activated IQ and MeIQ to bacterial mutagens, with MeIQ being about twice as potent as IQ. The mutagenic activities of IQ and MeIQ were increased by using hepatocytes from PCB-pretreated rats. IQ and MeIQ also caused primary DNA damage in the hepatocytes as determined by increases in the rate of alkaline elution of DNA, as well as increases in DNA-repair synthesis. Furthermore, exposure of V79 cells co-cultured with PCB-pretreated hepatocytes to IQ and MeIQ showed evidence of increased sister-chromatid exchanges and a low and variable increase in the number of 6-thioguanine-resistant mutants. The genotoxic potency of IQ and MeIQ in mammalian cells was low or virtually absent compared to their extreme potency in bacteria. This could be due to a lower capacity of mammalian cells to further metabolize the so-called directly acting bacterial mutagens, formed by a cytochrome P-450 dependent N-hydroxylation, to their ultimate reactive forms.  相似文献   

14.
Identification and cloning of a umu locus in Streptomyces coelicolor A3(2)   总被引:1,自引:0,他引:1  
The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV and many other DNA-damaging agents. E. coli umu mutants are defective in mutagenesis and slightly more sensitive to DNA-damaging agents. The existence of a umuDC analogue in Streptomyces coelicolor was suggested by data of our previous works. We cloned from Streptomyces coelicolor a fragment of DNA homologous to the E. coli umuDC region that is able to complement the E coli umuC122::Tn5 mutation. Therefore our data suggest that S. coelicolor contains a functional umu-like operon.  相似文献   

15.
R Woodgate 《Mutation research》1992,281(3):221-225
Using a specialized transducing lambda phage, the umuDC operon of Escherichia coli was deleted and replaced with the chloramphenicol acetyltransferase gene. The delta (umuDC)595::cat mutation was subsequently transferred by generalized P1 transduction into a variety of genetic backgrounds. It is concluded that the UmuDC proteins, which are normally required for inducible mutagenesis, are not essential for cell survival.  相似文献   

16.
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD'. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD' protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD'-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD' functions in vivo as well as examined HumD's physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive DeltaumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD', HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD'-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo.  相似文献   

17.
We previously reported the development of mutation-specific Escherichia coli B tester strains WP3101 to WP3106 from strain WP2uvrA. In this study we constructed their pKM101-containing derivatives WP3101P to WP3106P, and further isolated their rfa derivatives WP4101-WP4106 and WP4101P-WP4106P. The six kinds of F' plasmids (lacI-, lacZ-, proAB+), each of which carries a different lacZ allele, contained in the above strains were originally derived from E. coli K-12 strains CC101-CC106. All the tester strains show Lac- and Trp- phenotype. Assays for transitions and transversions are based upon Lac+ reversion of a specific mutation located within the lacZ gene on an F' plasmid. The trpE65(ochre) allele in the same strains enables them to be used for Trp+ reversion assays as well. In the present paper, we evaluated the sensitivity, specificity, and usefulness of the newly developed tester strains. Strains WP3101P-WP3106P were highly sensitive to determine mutational profile of heterocyclic amines with S9 mix-mediated metabolic activation and most of the oxidative mutagens and free radical generators tested. Every type of base-pair substitutions induced by 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) or 5-diazouracil were detected in strains WP3101P-WP3106P, while A:T-->C:G and G:C-->A:T mutations induced by MeIQ, and A:T-->C:G, G:C-->A:T, and G:C-->C:G by 5-diazouracil were not detected in pKM101-free tester strains. In pKM101-carrying strains, cumene hydroperoxide induced all types of base substitutions, while formaldehyde preferentially induced G:C-->T:A transversions. Phenazine methosulfate induced predominantly G:C-->A:T transitions and G:C-->T:A transversions, while H2O2 induced predominantly G:C-->T:A and A:T-->T:A transversions. Introduction of the rfa mutation considerably enhanced sensitivity to bulky mutagens such as polycyclic aromatic compounds. All six possible base substitutions induced by 9, 10-dimethyl-1,2-benzanthracene (DMBA) were detected in tester strains WP4101P-WP4106P. In conclusion, our tester strains WP3101P-WP3106P and WP4101P-WP4106P permitted rapid and simple detection of specific mutations induced by variety of mutagens.  相似文献   

18.
In Escherichia coli, efficient mutagenesis by UV requires the umuDC operon. A deficiency in umuDC activity is believed to be responsible for the relatively weak UV mutability of Salmonella typhimurium LT2 compared with that of E. coli. To begin evaluating this hypothesis and the evolutionary relationships among umuDC-related sequences, we cloned and sequenced the S. typhimurium umuDC operon. S. typhimurium umuDC restored mutability to umuD and umuC mutants of E. coli. DNA sequence analysis of 2,497 base pairs (bp) identified two nonoverlapping open reading frames spanning 1,691 bp that were were 67 and 72% identical at the nucleotide sequence level to the umuD and umuC sequences, respectively, from E. coli. The sequences encoded proteins whose deduced primary structures were 73 and 84% identical to the E. coli umuD and umuC gene products, respectively. The two bacterial umuDC sequences were more similar to each other than to mucAB, a plasmid-borne umuDC homolog. The umuD product retained the Cys-24--Gly-25, Ser-60, and Lys-97 amino acid residues believed to be critical for RecA-mediated proteolytic activation of UmuD. The presence of a LexA box 17 bp upstream from the UmuD initiation codon suggests that this operon is a member of an SOS regulon. Mu d-P22 inserts were used to locate the S. typhimurium umuDC operon to a region between 35.9 and 40 min on the S. typhimurium chromosome. In E. coli, umuDC is located at 26 min. The umuDC locus in S. typhimurium thus appears to be near one end of a chromosomal inversion that distinguishes gene order in the 25- to 35-min regions of the E. coli and S. typhimurium chromosomes. It is likely, therefore, that the umuDC operon was present in a common ancestor before S. typhimurium and E. coli diverged approximately 150 million years ago. These results provide new information for investigating the structure, function, and evolutionary origins of umuDC and for exploring the genetic basis for the mutability differences between S. typhimurium and E. coli.  相似文献   

19.
Identification of a umuDC locus in Salmonella typhimurium LT2.   总被引:9,自引:8,他引:1       下载免费PDF全文
The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV light and many other DNA-damaging agents. The existence of a umuDC analog in Salmonella typhimurium has been questioned. With DNA probes to the E. coli umuD and umuC genes, we detected, by Southern blot hybridization, sequences similar to both of these genes in S. typhimurium LT2. We also confirmed that the presence of cloned E. coli umuD enhances the UV mutability and resistance of S. typhimurium. Our data strongly suggest that S. typhimurium contains a functional umuDC operon.  相似文献   

20.
Comparative studies of plasmids col I and pKM101 effect on lethal and mutagenic response to UV-light and chemical agents (4NQ0, EMS, agent N012074) has been carried out in Salmonella strains used for screening of mutagens (potential carcinogens). It has been found that the plasmid pKM101 has more pronounced effect as compared with coll plasmid. Contrary to plasmid pKM101-mediated ability to form UV-induced frameshift mutation, colI factor lacks this ability and very slightly enhances the rate of frameshift mutagenesis induced by chemical agents under study. The colicinogenic factor is found to enhance only the rate of base-pair substitutions, whereas plasmid pKM101 enhances the rate of both base-pair substitutions and frameshift mutations. We were unable to demonstrate combined effect of these two plasmids on the rate of either spontaneous or induced mutations. Possible mechanisms of plasmid-mediated bacterial mutagenesis and repair are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号