首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs’ deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.  相似文献   

2.
The stable coexistence of transposable elements (TEs) with their host genome over long periods of time suggests TEs have to impose some deleterious effect upon their host fitness. Three mechanisms have been proposed to account for the deleterious effect caused by TEs: host gene interruptions by TE insertions, chromosomal rearrangements by TE-induced ectopic recombination, and costly TE expression. However, the relative importance of these mechanisms remains controversial. Here, we test specifically if TE expression accounts for the host fitness cost imposed by TE insertions. In the retrotransposon Doc, expression requires binding of the host RNA polymerase to the internal promoter. If expression of Doc elements is deleterious to their host, Doc copies with promoters would be more strongly selected against and would persist in the population for shorter periods of time compared with Docs lacking promoters. We tested this prediction using sequence-specific amplified polymorphism (SSAP) analyses. We compared the populations of these two types of Doc elements in two sets of lines of Drosophila melanogaster: selection-free isogenic lines accumulating new Doc insertions and isogenized isofemale lines sampled from a natural population. We found that (1) there is no difference in the proportion of promoter-bearing and promoter-lacking copies between sets of lines, and (2) the site occupancy distribution of promoter-bearing copies does not skew toward lower frequency compared with that of promoter-lacking copies. Thus, selection against promoter-bearing copies does not appear to be stronger than that of promoter-lacking copies. Our results show that expression is not playing a major role in stabilizing Doc copy numbers.  相似文献   

3.
To investigate the main forces controlling the containment of transposable elements (TE) in natural populations, we analyzed the copia, mdg1, and 412 elements in various populations of Drosophila melanogaster and D. simulans. A lower proportion of insertion sites on the X chromosome in comparison with the autosomes suggests that selection against the detrimental effects of TE insertions is the major force containing TE copies in populations of Drosophila. This selection effect hypothesis is strengthened by the absence of the negative correlation between recombination rate and TE copy number along the chromosomes, which was expected under the alternative ectopic exchange model (selection against the deleterious rearrangements promoted by recombination between TE insertions). A cline in 412 copy number in relation to latitude was observed among the natural populations of D. simulans, with very high numbers existing in some local populations (around 60 copies in a sample from Canberra, Australia). An apparent absence of selection effects in this Canberra sample and a value of transposition rate equal to 1–2 × 10-3 whatever the population and its copy number agree with the idea of recent but temporarily drastic TE movements in local populations. The high values of transposition rate in D. simulans clearly disfavor the hypothesis that the low amount of transposable elements in this species could result from a low transposition rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We estimated the number of copies for the long terminal repeat (LTR) retrotransposable element roo in a set of long-standing Drosophila melanogaster mutation-accumulation full-sib lines and in two large laboratory populations maintained with effective population size approximately 500, all of them derived from the same isogenic origin. Estimates were based on real-time quantitative PCR and in situ hybridization. Considering previous estimates of roo copy numbers obtained at earlier stages of the experiment, the results imply a strong acceleration of the insertion rate in the accumulation lines. The detected acceleration is consistent with a model where only one (maybe a few) of the approximately 70 roo copies in the ancestral isogenic genome was active and each active copy caused new insertions with a relatively high rate ( approximately 10(-2)), with new inserts being active copies themselves. In the two laboratory populations, however, a stabilized copy number or no accelerated insertion was found. Our estimate of the average deleterious viability effects per accumulated insert [E(s) < 0.003] is too small to account for the latter finding, and we discuss the mechanisms that could contain copy number.  相似文献   

5.
Trudy F. C. Mackay 《Genetics》1985,111(2):351-374
The P family of transposable elements in Drosophila melanogaster transpose with exceptionally high frequency when males from P strains carrying multiple copies of these elements are crossed to females from M strains that lack P elements, but with substantially lower frequency in the reciprocal cross. Transposition is associated with enhanced mutation rates, caused by insertion and deletion of P elements, and chromosome rearrangements. If P element mutagenesis creates additional variation for quantitative traits, accelerated response to artificial selection of progeny of M female female X P male male strain crosses is expected, compared with that from progeny of P female female X M male male strain crosses.--Divergent artificial selection for number of bristles on the last abdominal tergite was carried out for 16 generations among the progeny of P-strain males (Harwich) and M-strain females (Canton-S) and also of M-strain males (Canton-S) and P-strain females (Harwich). Each cross was replicated four times. Average realized heritability of abdominal bristle score for the crosses in which P transposition was expected was 0.244 +/- 0.017, 1.5 times greater than average heritability estimated from crosses in which transposition was expected to be rare (0.163 +/- 0.010). Phenotypic variance of abdominal bristle score increased by a factor of four in lines selected from M female female X P male male crosses when compared with those selected from P female female X M male male hybrids. Not all quantitative genetic variation induced by P elements is additive. A substantial fraction of nonadditive genetic variation is implicated by chromosomal analysis, which demonstrates deleterious fitness effects of the mutations when homozygous.--Several putative "quantitative" mutations were identified from chromosomes extracted from the selected lines; these will form the basis for further investigation at the molecular level of the genes controlling quantitative inheritance.  相似文献   

6.
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many "novel" TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods.  相似文献   

7.
C. Hoogland  C. Biemont 《Genetics》1996,144(1):197-204
Data of insertion site localization and site occupancy frequency of P, hobo, I, copia, mdg1, mdg3, 412, 297, and roo transposable elements (TEs) on the polytene chromosomes of Drosophila melanogaster were extracted from the literature. We show that TE insertion site number per chromosomal division was significantly correlated with the amount of DNA. The insertion site number weighted by DNA content was not correlated with recombination rate for all TEs except hobo, for which a positive correlation was detected. No global tendency emerged in the relationship between TE site occupancy frequency, weighted by DNA content, and recombination rate; a strong negative correlation was, however, found for the 3L arm. A possible dominant deleterious effect of chromosomal rearrangements due to recombination between TE insertions is thus not the main factor explaining the dynamics of TEs, since this hypothesis implies a negative relationship between recombination rate and both TE insertion site number and site occupancy frequency. The alternative hypothesis of selection against deleterious effects of insertional mutations is discussed.  相似文献   

8.
Bégin M  Schoen DJ 《Genetics》2006,174(4):2129-2136
Little is known about the role of transposable element (TE) insertion in the production of mutations with mild effects on fitness, the class of mutations thought to be central to the evolution of many basic features of natural populations. We propagated mutation-accumulation (MA) lines of two RNAi-deficient strains of Caenorhabditis elegans that exhibit germline transposition. We show here that the impact of TE activity was to raise the level of mildly deleterious mutation by 2- to 8.5-fold, as estimated from fecundity, longevity, and body length measurements, compared to that observed in a parallel MA experiment with a control strain characterized by a lack of germline transposition. Despite this increase, the rate of mildly deleterious mutation was between one and two orders of magnitude lower than the rate of TE accumulation, which was approximately two new insertions per genome per generation. This study suggests that high rates of TE activity do not necessarily translate into high rates of detectable nonlethal mutation.  相似文献   

9.
It is recognized that a stable number of transposable element (TE) copies per genome is maintained in natural populations of D. melanogaster as a result of the dynamic equilibrium between transposition to new sites and natural selection eliminating copies. The force of natural selection opposing TE multiplication is partly relaxed in inbred laboratory lines of flies. The average rate of TE transposition is from 2.6 × 10 -4 to 5.0 ×10 -4 per copy per generation, and the average rate of excision is at least two orders of magnitude lower; therefore inbred lines accumulate increasing numbers of copies with time. Correlations between the rate of transposition and TE copy number have been determined for copia, Doc, roo, and 412 and found to be either zero or positive. Because the rate of transposition is not a decreasing function of TE copy number, TE accumulation in inbred lines is self-accelerating. Transpositions cause a substantial fraction of mutations in D. melanogaster, therefore the mutation rate should increase with time in laboratory lines of this species. Inferences about the properties of spontaneous mutations from studies of mutation accumulation in laboratory lines should be reevaluated, because they are based on the assumption of a constant mutation rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Fry JD  Nuzhdin SV 《Genetics》2003,163(4):1357-1364
There have been several attempts to estimate the average dominance (ratio of heterozygous to homozygous effects) of spontaneous deleterious mutations in Drosophila melanogaster, but these have given inconsistent results. We investigated whether transposable element (TE) insertions have higher average dominance for egg-to-adult viability than do point mutations, a possibility suggested by the types of fitness-depressing effects that TEs are believed to have. If so, then variation in dominance estimates among strains and crosses would be expected as a consequence of variation in TE activity. As a first test, we estimated the average dominance of all mutations and of copia insertions in a set of lines that had accumulated spontaneous mutations for 33 generations. A traditional regression method gave a dominance estimate for all mutations of 0.17, whereas average dominance of copia insertions was 0.51; the difference between these two estimates approached significance (P = 0.08). As a second test, we reanalyzed Ohnishi 1974 data on dominance of spontaneous and EMS-induced mutations. Because a considerable fraction of spontaneous mutations are caused by TE insertions, whereas EMS induces mainly point mutations, we predicted that average dominance would decline with increasing EMS concentration. This pattern was observed, but again fell short of formal significance (P = 0.07). Taken together, however, the two results give modest support for the hypothesis that TE insertions have greater average dominance in their viability effects than do point mutations, possibly as a result of deleterious effects of expression of TE-encoded genes.  相似文献   

11.
Deceliere G  Charles S  Biémont C 《Genetics》2005,169(1):467-474
We analyzed the dynamics of transposable elements (TEs) according to Wright's island and continent-island models, assuming that selection tends to counter the deleterious effects of TEs. We showed that migration between host populations has no impact on either the existence or the stability of the TE copy number equilibrium points obtained in the absence of migration. However, if the migration rate is slower than the transposition rate or if selection is weak, then the TE copy numbers in all the populations can be expected to slowly become homogeneous, whereas a heterogeneous TE copy number distribution between populations is maintained if TEs are mobilized in some populations. The mean TE copy number is highly sensitive to the population size, but as a result of migration between populations, it decreases as the sum of the population sizes increases and tends to reach the same value in these populations. We have demonstrated the existence of repulsion between TE insertion sites, which is established by selection and amplified by drift. This repulsion is reduced as much as the migration rate is higher than the recombination rate between the TE insertion sites. Migration and demographic history are therefore strong forces in determining the dynamics of TEs within the genomes and the populations of a species.  相似文献   

12.
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they may compose up to 90% of the genome. Many studies, both in plants and animals reported that in fact non-autonomous elements that have lost their protein-coding sequences and became miniature elements were highly associated with genes, and showed a high level of transpositional activity such as mPing family in rice. In this study, we have investigated in detail the copy number, insertional polymorphism and the methylation status of the tiniest LTR retrotransposon family, termed TRIM, in nine rice strains, in comparison with mPing. While TRIM showed similar copy numbers (average of 79 insertions) in all the nine rice strains, the copy number of mPing varied dramatically (ranging from 6 to 203 insertions) in the same strains. Site-specific PCR analysis revealed that ~58% of the TRIM elements have identical insertion sites among the nine rice strains, while none of the mPing elements (100% polymorphism) have identical insertion sites in the same strains. Finally, over 65% of the TRIM insertion sites were cytosine methylated in all nine rice strains, while the level of the methylated mPing insertion sites ranged between 43 and 81.5%. The findings of this study indicate that unlike mPing, TRIM is most probably a fossil TE family in rice. In addition, the data shows that there might be a strong correlation between TE methylation and copy number.  相似文献   

13.
C. M. Wilke  J. Adams 《Genetics》1992,131(1):31-42
It has been suggested that the primary evolutionary role of transposable elements is negative and parasitic. Alternatively, the target specificity and gene regulatory capabilities of many transposable elements raise the possibility that transposable element-induced mutations are more likely to be adaptively favorable than other types of mutations. Populations of Saccharomyces cerevisiae containing large amounts of variation for Ty1 genomic insertions were constructed, and the effects of Ty1 copy number on two components of fitness, yield and growth rate were determined. Although mean stationary phase density decreased with increased Ty1 copy number, the variance and range increased. The distributions of stationary phase densities indicate that many Ty1 insertions have negative effects on fitness, but also that some may have positive effects. To test directly for adaptively favorable Ty1 insertions, populations containing large amounts of variability for Ty1 copy number were grown in continuous culture. After 98-112 generations the frequency of clones containing zero Ty1 elements had decreased to approximately 0.0, and specific Ty1-containing clone families had predominated. Considering that most of the genetic variation in the populations was due to Ty1 transposition, and that Ty1 insertions had, on average, a negative effect on fitness, we conclude that Ty1 transposition events were directly responsible for the production of adaptive mutations in the clones that predominated in the populations.  相似文献   

14.
The changes in mdg-1 mobile element polymorphism that followed artificial selection for either high or low egg-to-adult viability in a Drosophila melanogaster population were investigated. The two selected subpopulations were thus characterized for fecundity, wing length, and number and location of the mdg-1 mobile element by in situ hybridization of the biotinylated-DNA on salivary gland chromosomes. The selected populations that differed greatly in egg-to-adult viability showed the same mean fecundity and identical values for intra and inter components of variances, intraclass correlation coefficient, and fluctuating asymmetry estimated on the wing length measurement. This indicates a non-correlated effect between deleterious mutations affecting viability and other fitness components. However, the two selected populations differed in their pattern of mdg-1 location, although the mean number of insertions per genome was not different from that of the initial population hence, the number of insertions of the mdg-1 mobile element was independent of the effective population size. These results suggest that the mdg-1 copy number was regulated, and that during the selection process, drift and inbreeding made up new insertion patterns of the mdg-1 element in the selected populations. The results are discussed in the light of some recent theoretical models of the population dynamics of transposable elements.  相似文献   

15.
Steady-state transposon mutagenesis in inbred maize   总被引:8,自引:0,他引:8  
We implement a novel strategy for harnessing the power of high-copy transposons for functional analysis of the maize genome, and report behavioral features of the Mutator system in a uniform inbred background. The unique UniformMu population and database facilitate high-throughput molecular analysis of Mu-tagged mutants and gene knockouts. Key features of the population include: (i) high mutation frequencies (7% independent seed mutations) and moderation of copy number (approximately 57 total Mu elements; 1-2 MuDR copies per plant) were maintained by continuous back-crossing into a phenotypically uniform inbred background; (ii) a bz1-mum9 marker enabled selection of stable lines (loss of MuDR), inhibiting further transpositions in lines selected for molecular analysis; (iii) build-up of mutation load was prevented by screening Mu-active parents to exclude plants carrying pre-existing seed mutations. To create a database of genomic sequences flanking Mu insertions, selected mutant lines were analyzed by sequencing of MuTAIL PCR clone libraries. These sequences were annotated and clustered to facilitate bioinformatic subtraction of ancestral elements and identification of insertions unique to mutant lines. New insertions targeted low-copy, gene-rich sequences, and in silico mapping revealed a random distribution of insertions over the genome. Our results indicate that Mu populations differ markedly in the occurrence of Mu insertion hotspots and the frequency of suppressible mutations. We suggest that controlled MuDR copy number in UniformMu lines is a key determinant of these differences. The public database (http://uniformmu.org; http://endosperm.info) includes pedigree and phenotypic data for over 2000 independent seed mutants selected from a population of 31 548 F2 lines and integrated with analyses of 34 255 MuTAIL sequences.  相似文献   

16.
Transposable elements (TEs) are repetitive DNA sequences that are ubiquitous, extremely abundant and dynamic components of practically all genomes. Much effort has gone into annotation of TE copies in reference genomes. The sequencing cost reduction and the newly available next-generation sequencing (NGS) data from multiple strains within a species offer an unprecedented opportunity to study population genomics of TEs in a range of organisms. Here, we present a computational pipeline (T-lex) that uses NGS data to detect the presence/absence of annotated TE copies. T-lex can use data from a large number of strains and returns estimates of population frequencies of individual TE insertions in a reasonable time. We experimentally validated the accuracy of T-lex detecting presence or absence of 768 previously identified TE copies in two resequenced Drosophila melanogaster strains. Approximately 95% of the TE insertions were detected with 100% sensitivity and 97% specificity. We show that even at low levels of coverage T-lex produces accurate results for TE copies that it can identify reliably but that the rate of 'no data' calls increases as the coverage falls below 15×. T-lex is a broadly applicable and flexible tool that can be used in any genome provided the availability of the reference genome, individual TE copy annotation and NGS data.  相似文献   

17.
The effects of genomic position and copy number of acyl-acyl carrier protein (ACP) thioesterase (TE) transgenes on the major target fatty acid, either lauric acid (C12:0) or palmitic acid (C16:0) depending on the TE, in transgenic Brassica napus seed oil were investigated. Four transgenic parental lines, transformed individually with the bay-TE (Uc FatB1), elm-TE (Ua FatB1), nutmeg-TE (Mf FatB1) and Cuphea-TE (Ch FatB1) transgenes, were crossed with the non-transgenic recipient genotypes '212/86' or 'QO4'. Bay-TE and Cuphea-TE F1 seeds, which carry half the number of the construct copies compared to the self-pollinated seeds of the transgenic parents, showed significantly lower levels of the target fatty acid. Doubled haploid (DH) lines were developed through microspore culture from F1 hybrids with the elm-TE or the Cuphea-TE transgenes. DH lines carrying one to five copies of the Cuphea-TE transgene displayed a positive correlation between transgene copy number and the target fatty acid C16:0 level (r = 0.77**). DH lines with elm-TE transgene copies at four different loci showed different C16:0 levels, with one of the loci (E-II) leading to significantly higher C16:0 levels. This study supports the importance of the selection of high transgene copy number and/or the optimum genomic integration site in order to achieve maximum expression levels of the target fatty acid in transgenic oil quality modification.  相似文献   

18.
Repeated efforts to estimate the genomic deleterious mutation rate per generation (U) in Drosophila melanogaster have yielded inconsistent estimates ranging from 0.01 to nearly 1. We carried out a mutation-accumulation experiment with a cryopreserved control population in hopes of resolving some of the uncertainties raised by these estimates. Mutation accumulation (MA) was carried out by brother sister mating of 150 sublines derived from two inbred lines. Fitness was measured under conditions chosen to mimic the ancestral laboratory environment of these genotypes. We monitored the insertions of a transposable element, copia, that proved to accumulate at the unusually high rate of 0.24 per genome per generation in one of our MA lines. Mutational variance in fitness increased at a rate consistent with previous studies, yielding a mutational coefficient of variation greater than 3%. The performance of the cryopreserved control relative to the MA lines was inconsistent, so estimates of mutation rate by the Bateman-Mukai method are suspect. Taken at face value, these data suggest a modest decline in fitness of about 0.3% per generation. The element number of copia was a significant predictor of fitness within generations; on average, insertions caused a 0.76% loss in fitness, although the confidence limits on this estimate are wide.  相似文献   

19.
The fitness effects of spontaneous mutations in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Abstract. Spontaneous mutation to mildly deleterious alleles has emerged as a potentially unifying component of a variety of observations in evolutionary genetics and molecular evolution. However, the biological significance of hypotheses based on mildly deleterious mutation depends critically on the rate at which new mutations arise and on their average effects. A long-term mutation-accumulation experiment with replicate lines of the nematode Caenorhabditis elegans maintained by single-progeny descent indicates that recurrent spontaneous mutation causes approximately 0.1% decline in fitness per generation, which is about an order of magnitude less than that suggested by previous studies with Drosophila . Two rather different approaches, Bateman-Mukai and maximum likelihood, suggest that this observation, along with the observed rate of increase in the variance of fitness among lines, is consistent with a genomic deleterious mutation rate for fitness of approximately 0.03 per generation and with an average homozygous effect of approximately 12%. The distribution of mutational effects for fitness appears to have a relatively low coefficient of variation, being no more extreme than expected for a negative exponential, and for one composite fitness measure (total progeny production) approaches constancy of effects. These results are derived from assays in a benign environment. At stressful temperatures, estimates of the genomic deleterious mutation rate (for genes expressed at such temperatures) is sixfold lower, whereas those for the average homozygous effect is approximately eightfold higher. Our results are reasonably compatible with existing estimates for flies, when one considers the differences between these species in the number of germ-line cell divisions per generation and the magnitude of transposable element activity.  相似文献   

20.
The insertion site numbers of the retrotransposable elements (TE) 412, gypsy and bilbo were determined in individuals of five distinct natural populations of the endemic species Drosophila madeirensis from the island of Madeira. The TE distributions were compared to those of the paleartic, widespread and phylogenetically closely related species, D. subobscura. In situ hybridization and Southern blots showed that in D. madeirensis the number of insertion sites ranged between 10 and 15, three and six, and 35 and 42 for elements 412, gypsy and bilbo, respectively. The corresponding values for D. subobscura were similar. Two of these elements, 412 and gypsy, had very few insertions in the heterochromatin, unlike bilbo, which displayed a high heterochromatic insertion number. The Southern band polymorphism was very high, leading to within-population variation of 97.2%, whatever the population and the TE concerned. Using the polymorphic TE insertion sites as markers to analyse population structure by AMOVA, adapted for RAPD (Randomly Amplified Polymorphic DNA) data, we found small but significant genetic differences between the populations on Madeira. This slight differentiation, coupled with similar copy numbers for each TE between populations, suggests that the D. madeirensis species consists of a single, only slightly subdivided population. These data also show that insular populations and endemic species of Drosophila can have as many copies of TEs as more widespread species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号