首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Ten genetic markers were studied in seven Spanish native cattle breeds, using a total of 725 animals. Of the ten, two were found to be monomorphic in all seven breeds. The genetic relationships of the seven breeds are estimated by three different genetic-statistical methods (genetic distances, main coordinate analysis and cluster analysis), which indicate three clearly distinct groups of populations: one where the Cárdena Andaluza and Alistana Sanabresa are very closely related, one comprising Sayaguesa, Morucha, Asturiana de los Valles and Asturiana de la Montaña cattle, and a third, genetically distant from the other two, comprising only Blanca Cacereña. The dendrogram drawn from the genetic distances matrix would seem to imply that the seven breeds are descended from different ancestors.  相似文献   

2.
The genetic diversity among Canadienne, Brown Swiss, Holstein, and Jersey cattle was estimated from relationships determined by genotyping 20 distantly related animals in each breed for 15 microsatellites located on separate chromosomes. The Canadienne, Holstein, and Jersey cattle had an average of six alleles per loci compared with five alleles for Brown Swiss. Furthermore, a number of potentially breed-specific alleles were identified. The allele size variance among breeds was similar, but varied considerably among loci. All of the loci studied were equally heterozygous, as were Brown Swiss, Canadienne, and Holstein cattle (0.68-0.69) whereas Jersey cattle showed lower heterozygosity (0.59). The within-breed estimates of genetic distance were greater than zero and significant. The genetic distance between Canadienne and Holstein (0.156), Brown Swiss (0.243), and Jersey (0.235) was negligible, suggesting close relationship. Concurrently, Brown Swiss and Holstein (0.211) cattle also demonstrated close relationship. In contrast, the Jersey breed was genetically distant from the Brown Swiss and Holstein cattle (0.427 and 0.320, respectively). The characterization of Canadienne cattle, as part of the genetic resource conservation effort currently underway in Canada, underscores the difficulty in scientifically establishing unique breeds. Therefore, the need to consider all relevant morphological characteristics and production performance in combination with available cultural, historical, pedigree, and molecular information becomes relevant when identifying breeds for conservation.  相似文献   

3.
Six native Spanish cattle breeds have been characterized by using 30 microsatellite markers. The studied populations can be divided into three groups: Brown orthoid (Asturian Mountain, Asturian Lowland and the Nord-west Brown Group), Red convex (Pyrenean and Menorquina) and the Iberian bovine (Fighting bull). Allele frequencies were calculated and used for the characterization of the breeds and the study of their genetic relationships. Different genetic distance measures were calculated and used for dendogram construction. The closest populations were those representing Asturian breeds, the most divergent being Menorquina and Fighting Bull. The latter also showed the lowest diversity values (mean number of alleles per locus and heterozygosity). Genetic distances obtained between the other populations under analysis were similar to those reported for different European cattle breeds. This work analyzes the recent origin of these populations and contributes to the knowledge and genetic characterization of European native breeds.  相似文献   

4.
The genetic structure of eight Spanish autochthonous populations (breeds) of beef cattle were studied from pedigree records. The populations studied were: Alistana and Sayaguesa (minority breeds), Avileña – Negra Ibérica and Morucha ("dehesa" breeds, with a scarce incidence of artificial insemination), and mountain breeds, including Asturiana de los Valles, Asturiana de la Montaña and Pirenaica, with extensive use of AI. The Bruna dels Pirineus breed possesses characteristics which make its classification into one of the former groups difficult. There was a large variation between breeds both in the census and the number of herds. Generation intervals ranged from 3.7 to 5.5 years, tending to be longer as the population size was larger. The effective numbers of herds suggest that a small number of herds behaves as a selection nucleus for the rest of the breed. The complete generation equivalent has also been greatly variable, although in general scarce, with the exception of the Pirenaica breed, with a mean of 3.8. Inbreeding effective population sizes were actually small (21 to 127), especially in the mountain-type breeds. However, the average relatedness computed for these breeds suggests that a slight exchange of animals between herds will lead to a much more favourable evolution of inbreeding. The effective number of founders and ancestors were also variable among breeds, although in general the breeds behaved as if they were founded by a small number of animals (25 to 163).  相似文献   

5.
6.
Twenty paternal half-sib families of a granddaughter design were genotyped for 265 genetic markers, most of them microsatellites. These were 16 Holstein families, 3 Simmental families, and 1 Brown Swiss family. The number of sires per breed was 872, 170, and 32, respectively. Two-point recombination rates were estimated both jointly for all breeds and each single breed separately. Of 1168 marker intervals, 865 provided estimates for at least two breeds. Differences between breeds were tested by likelihood ratio tests. Four marker intervals, representing three genomic regions on BTA19, BTA24, and BTA27, show a significant impact of the breed at a false discovery rate of 0.23 and indicate a genetic component of observed heterogeneity of recombination. The variability of recombination rates between cattle breeds might not be a common feature of the whole genome, but rather might be restricted to certain chromosomal segments. Thus, attention should be paid to heterogeneities when pooling data of such regions from different breeds. Received: 14 March 2001 / Accepted: 8 May 2001  相似文献   

7.
Arachnomelia syndrome is a lethal inherited malformation mainly of the limbs, vertebral column and skull in cattle, which poses a severe impairment to farmers and breeders. Recently, a number of cases of arachnomelia syndrome have occurred in the Simmental breed and some sires with excellent breeding values had been shown to be carriers of the disease. We herein report the genetic mapping of the mutation underlying arachnomelia in cattle. The disease was mapped using a two-stage genome scan. A first round autosomal genome-wide screening using a limited number of cases identified three chromosomal regions with lod-scores > 1. The position of the arachnomelia syndrome locus was identified to be on BTA 23 by genotyping an additional, independent set of animals with markers that provided positive lod-scores in the course of the initial genome-wide screen. Using a denser set of regional microsatellites, the locus could be mapped to a region about 9 cM in length. The most significant linkage signal with arachnomelia syndrome was obtained with marker NRKM-17 (lod-score > 20) using a recessive model. Interestingly, different genes seem to be responsible for the disease in Brown Swiss and Simmental breeds, as arachnomelia syndrome was mapped to a different location in Brown Swiss. The results provide sufficient information for the development of a genetic test system and also allow the identification of positional candidate genes.  相似文献   

8.
Five cattle Y‐specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2‐haplotypes were only present in African cattle. Network and correspondence analyses showed that this African‐specific subfamily clustered separately from the main Y2‐subfamily and the Y1 haplotypes. Within‐breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between‐breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub‐Saharan Africa (belonging to Y2‐haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y‐chromosome lineages (Y1 and Y2) in taurine cattle. However, Y‐specific microsatellites increased analytical resolution and allowed at least two different Y2‐haplotypic subfamilies to be distinguished, one of them restricted to the African continent.  相似文献   

9.
Nineteen cattle bones from the Viking 10th and early 11th century levels in Dublin were assessed for presence of reliable genotypes from three autosomal markers. Due to the good preservational condition of the samples, it was possible to amplify and type at least two out of three of the microsatellite markers (CSRM60, HEL1 and ILSTS001) in 11 specimens. Full three-loci genotypes were obtained from a subset of seven of these samples. A comparative analysis was performed using data from the same three markers in 11 extant British, Irish and Nordic cattle breeds. Although the medieval remains displayed lower levels of diversity than the modern European breeds, the results fit within the ranges obtained from the extant populations. The results indicate a probable origin for the ancient Irish cattle as the remains group significantly more closely with breeds from the British Isles than with those from Scandinavia. The data collected indicate that microsatellites may be useful for the further study of ancient cattle.  相似文献   

10.
To guide genetic conservation programmes with objective criteria, general genetic variability has to be taken into account. This study was conducted to determine the genetic variation between 10 cattle breeds by using 17 microsatellite loci and 13 biochemical markers (11 blood groups, the transferrin and β-casein loci). Microsatellite loci were amplified in 31–50 unrelated individuals from 10 cattle breeds: Charolais, Limousin, Breton Black Pied, Parthenais, Montbéliard, Vosgien, Maine-Anjou, Normande, Jersey and Holstein. Neighbor-joining trees were calculated from genetic distance estimates. The robustness of tree topology was obtained by bootstrap resampling of loci. A total of 210 alleles of the 17 microsatellites were detected in this study and average heterozygosities ranged from 0·53 in the Jersey breed to 0·66 in the Parthenais breed. In general, low bootstrap values were obtained: with the 17 microsatellites, the highest bootstrap values concerned the Holstein/Maine-Anjou grouping with an occurrence of 74%; with the biochemical markers, this node had an occurrence of 79% and the Charolais/Limousin grouping appeared with an occurrence of 74%; when microsatellites and biochemical polymorphism were analysed together, the occurrence of the Holstein/Maine-Anjou grouping was 90% and that of the Charolais/Limousin grouping was 42%. These results suggest that 30 microsatellites, a number currently considered as sufficient to distinguish closely related breeds is, in fact, probably insufficient.  相似文献   

11.
Identifying genomic regions involved in the differences between breeds can provide information on genes that are under the influence of both artificial and natural selection. The aim of this study was to assess the genetic diversity and differentiation among four different Brown cattle populations (two original vs. two modern populations) and to characterize the distribution of runs of homozygosity (ROH) islands using the Illumina Bovine SNP50 BeadChip genotyping data. After quality control, 34 735 SNPs and 106 animals were retained for the analyses. Larger heterogeneity was highlighted for the original populations. Patterns of genetic differentiation, multidimensional scaling, and the neighboring joining tree distinguished the modern from the original populations. The FST‐outlier identified several genes putatively involved in the genetic differentiation between the two groups, such as stature and growth, behavior, and adaptability to local environments. The ROH islands within both the original and the modern populations overlapped with QTL associated with relevant traits. In modern Brown (Brown Swiss and Italian Brown), ROH islands harbored candidate genes associated with milk production traits, in evident agreement with the artificial selection conducted to improve this trait in these populations. In original Brown (Original Braunvieh and Braunvieh), we identified candidate genes related with fat deposition, confirming that breeding strategies for the original Brown populations aimed to produce dual‐purpose animals. Our study highlighted the presence of several genomic regions that vary between Brown populations, in line with their different breeding histories.  相似文献   

12.
Autosomal microsatellites are valuable tools for investigating genetic diversity and population structure and making conservation decisions to preserve valuable breeds of domestic animals. We carried out a linkage disequilibrium analysis using 29 microsatellite markers in six cattle populations: Suksun, Istoben, Yaroslavl, Kholmogory, Grey Ukrainian and Pechora type of Khologory cattle. We discovered a significant linkage disequilibrium between microsatellites INRA037 and CSRM60 in Grey Ukrainian cattle.  相似文献   

13.
Genetic relationships among Spanish sheep using microsatellites   总被引:23,自引:0,他引:23  
Five indigenous Spanish breeds of sheep, Churra, Latxa, Manchega, Rasa–Aragonesa and Merino, with Awassi sheep as a reference breed were genotyped for 19 DNA microsatellites. Allele frequencies and mean heterozygosities revealed the greatest genetic variation in Merino sheep and the lowest in Awassis. Differences in variability were not great in the other breeds studied. The dendrograms obtained based on genetic distances showed a large differentiation between Awassi sheep and the Spanish breeds, as was to be expected from their distinct genetic origin. Merinos appeared separated from the other four breeds, of which, according to a classification based on the fleece characteristics, Churra and Latxa belong to the churro type and Manchega and Rasa–Aragonesa to the so called entrefino type, though no clear separation was evident between the two types. These results suggest that morphological data alone are insufficient for determining relationships between breeds and that studies involving genetic markers may be of great assistance.  相似文献   

14.
In the present study, a sample of 88 animals belonging to four local (Modicana, Sarda, Sardo‐Bruna and Sardo‐Modicana) and one cosmopolitan (Italian Brown Swiss) cattle breeds were genotyped with a medium density SNP beadchip and compared to investigate their genetic diversity and the existence of selection signatures. A total of 43 012 SNPs distributed across all 29 autosomal chromosomes were retained after data quality control. Basic population statistics, Wright fixation index and runs of homozygosity (ROH) analyses confirmed that the Italian Brown Swiss genome was shaped mainly by selection, as underlined by the low values of heterozygosity and minor allele frequency. As expected, local cattle exhibited a large within‐breed genetic heterogeneity. The FST comparison revealing the largest number of significant SNPs was Sardo‐Bruna vs. Sardo‐Modicana, whereas the smallest was observed for Italian Brown Swiss vs. Sardo‐Modicana. Modicana exhibited the largest number of detected ROHs, whereas the smallest was observed for Sardo‐Modicana. Signatures of selection were detected in genomic regions that harbor genes involved in milk production traits for Italian Brown Swiss and fitness traits for local breeds. According to the results of multi‐dimensional scaling and the admixture analysis the Sardo‐Bruna is more similar to the Sarda than to the Italian Brown Swiss breed. Moreover, the Sardo‐Modicana is genetically closer to the Modicana than to the Sarda breed. Results of the present work confirm the usefulness of single nucleotide polymorphisms in deciphering the genetic architecture of livestock breeds.  相似文献   

15.
This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean Fst = 0.07; P < 0.01). Five different genetic distances were computed and compared with no correlation found to be significantly different from 0 between distances based on the effective size of the population and those which use the size of the alleles. The Weitzman recursive approach and a multivariate analysis were used to measure the contribution of the breeds diversity. The Weitzman approach suggests that the most important breeds to be preserved are those grouped into two clusters: the cluster formed by the Mirandesa and Alistana breeds and that of the Sayaguesa and Tudanca breeds. The hypothetical extinction of one of those clusters represents a 17% loss of diversity. A correspondence analysis not only distinguished four breed groups but also confirmed results of previous studies classifying the important breeds contributing to diversity. In addition, the variation between breeds was sufficiently high so as to allow individuals to be assigned to their breed of origin with a probability of 99% for simulated samples.  相似文献   

16.
The aim of this work was to perform a thorough analysis of the diversity of Y‐haplotypes in Spanish cattle. A total of 207 Bos taurus males were sampled across 25 European breeds, with a special focus on rare, local Spanish populations. Animals were genotyped with five Y‐specific microsatellites (INRA189, UMN0103, UMN0307, BM861 and BYM1), two indels (ZFY10 and USP9Y) and one SNP (UTY19). A new haplogroup, distinct from those described by Götherström et al. (2005), was identified and named Y1.2. Samples representing the three B. taurus Y‐haplogroups were genotyped for four additional Y chromosome SNPs (rs121919254, rs121919281, rs121919323 and rs137049553). Among these SNPs, only rs121919281 was informative in B. taurus and helped to confirm the new Y1.2 haplogroup. Analysis of a larger dataset of standardized haplotypes for 1507 individuals from 57 populations from Spain, other European countries and Africa showed the new Y1.2 haplogroup to be found exclusively in Spanish breeds. This finding reinforces the importance of local Spanish cattle as reservoirs of genetic diversity as well as the importance of the Iberian Peninsula in the history of cattle.  相似文献   

17.
Zhang GX  Wang ZG  Chen WS  Wu CX  Han X  Chang H  Zan LS  Li RL  Wang JH  Song WT  Xu GF  Yang HJ  Luo YF 《Animal genetics》2007,38(6):550-559
Twenty-seven domesticated yellow cattle breeds of China and three introduced cattle breeds were analysed by means of 30 microsatellite markers to determine the level of genetic variation within and among populations as well as the population structure. In all, 480 microsatellite alleles were observed across the 30 breeds with the mean number of alleles per locus of 9.093 for native breeds and 6.885 for the three introduced breeds. Mean F -statistics (0.08) for Chinese native cattle breeds implied that 92% of the total genetic variation was from genetic differentiation within each breed and 8% of the genetic variation existed among breeds. A phylogenetic tree was constructed based on Nei's genetic distances, and three clusters were obtained. According to the tree, the three introduced breeds were distinct from the 27 native breeds. The indigenous cattle breeds were divided into two clusters, one cluster including five humpless breeds and the other cluster containing 22 humped breeds. This study identifies multiple origins of yellow cattle of China from Bos taurus and Bos indicus . Furthermore, population structure analysis implies that there are possibly five independent original domestications for yellow cattle in China. Four of five origins were four different Bos indicus types, mainly in areas of the Chang Jiang, the Zhu Jiang River basin, the Yellow River and the Huai River basin. The other origin was for Bos taurus type of Mongolian descent, mainly located in Northwestern China, the Mongolian plateau and Northeastern China or north of the Great Wall.  相似文献   

18.
The routine collection and use of genomic data are useful for effectively managing breeding programs for endangered populations. Linkage disequilibrium (LD) using high‐density DNA markers has been widely used to determine population structures and predict the genomic regions that are associated with economic traits in beef cattle. The extent of LD also provides information about historical events, including past effective population size (Ne), and it allows inferences on the genetic diversity of breeds. The objective of this study was to estimate the LD and Ne in three Korean cattle breeds that are genetically similar but have different coat colors (Brown, Brindle and Jeju Black Hanwoo). Brindle and Jeju Black are endangered breeds with small populations, whereas Brown Hanwoo is the main breeding population in Korea. DNA samples from these cattle breeds were genotyped using the Illumina BovineSNP50 Bead Chip. We examined 13 cattle breeds, including European taurines, African taurines and indicines, and hybrids to compare their LD values. Brown Hanwoo consistently had the lowest mean LD compared to Jeju Black, Brindle and the other 13 cattle breeds (0.13, 0.19, 0.21 and 0.15–0.22 respectively). The high LD values of Brindle and Jeju Black contributed to small Ne values (53 and 60 respectively), which were distinct from that of Brown Hanwoo (531) for 11 generations ago. The differences in LD and Ne for each breed reflect the breeding strategy applied. The Ne for these endangered cattle breeds remain low; thus, effort is needed to bring them back to a sustainable tract.  相似文献   

19.
White-spotting coat colour phenotypes in cattle are either fixed characteristics of specific cattle breeds or occur sporadically owing to germline genetic variation of solid-coloured parents. A Brown Swiss cow showing a piebald pattern resembling colour-sidedness was referred for genetic evaluation. Both parents were normal solid-brown-coloured cattle. The cow was tested negative for the three known DNA variants in KIT, MITF and TWIST2 associated with different depigmentation phenotypes in Brown Swiss cattle. Whole-genome sequencing of the cow was performed and a heterozygous variant affecting the coding sequence of the bovine KIT gene was identified on chromosome 6. The variant is a 40 bp deletion in exon 9, NM_001166484.1:c.1390_1429del, and leads to a frameshift that is predicted to produce a novel 50 amino acid-long C-terminus replacing almost 50% of the wt KIT protein, including the functionally important intracellular tyrosine kinase domain (NP_001159956.1:p.(Asn464AlafsTer50)). Interestingly, among three available offspring, two solid-coloured daughters were genotyped as homozygous wt whereas a single son showing a slightly milder but still obvious depigmentation phenotype inherited a copy of the novel variant allele. The genetic findings provide strong evidence that the identified loss-of-function KIT variant most likely represents a de novo germline mutation that is causative owing to haploinsufficiency.  相似文献   

20.
Partition of the genetic variability, genetic structure and relationships among seven Spanish Celtic horse breeds were studied using PCR amplification of 13 microsatellites on 481 random individuals. In addition, 60 thoroughbred horses were included. The average observed heterozygosity and the mean number of alleles were higher for the Atlantic horse breeds than for the Balearic Islands breeds. Only eight percentage of the total genetic variability could be attributed to differences among breeds (mean FST approximately 0.08; P < 0.01). Atlantic breeds clearly form a separate cluster from the Balearic Islands breeds and among the former only two form a clear clustering, while the rest of Atlantic breeds (Jaca Navarra, Caballo Gallego and Pottoka) are not consistently differentiated. Multivariate analysis showed that Asturcon populations, Losina and Balearic Islands breeds are clearly separated from each other and from the rest of the breeds. In addition to this, the use of the microsatellites proved to be useful for breed assignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号