首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A trehalose synthase (TSase) that catalyzes the synthesis of trehalose from d-glucose and α-d-glucose 1-phosphate (α-d-glucose 1-P) was detected in a basidiomycete, Grifola frondosa. TSase was purified 106-fold to homogeneity with 36% recovery by ammonium sulfate precipitation and several steps of column chromatography. The native enzyme appears to be a dimer since it has apparent molecular masses of 120 kDa, as determined by gel filtration column chromatography, and 60 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Although TSase catalyzed the phosphorolysis of trehalose to d-glucose and α-d-glucose 1-P, in addition to the synthesis of trehalose from the two substrates, the TSase equilibrium strongly favors trehalose synthesis. The optimum temperatures for phosphorolysis and synthesis of trehalose were 32.5 to 35°C and 35 to 37.5°C, respectively. The optimum pHs for these reactions were 6.5 and 6.5 to 6.8, respectively. The substrate specificity of TSase was very strict: among eight disaccharides examined, only trehalose was phosphorolyzed, and only α-d-glucose 1-P served as a donor substrate with d-glucose as the acceptor in trehalose synthesis. Two efficient enzymatic systems for the synthesis of trehalose from sucrose were identified. In system I, the α-d-glucose 1-P liberated by 1.05 U of sucrose phosphorylase was linked with d-glucose by 1.05 U of TSase, generating trehalose at the initial synthesis rate of 18 mmol/h in a final yield of 90 mol% under optimum conditions (300 mM each sucrose and glucose, 20 mM inorganic phosphate, 37.5°C, and pH 6.5). In system II, we added 1.05 U of glucose isomerase and 20 mM MgSO4 to the reaction mixture of system I to convert fructose, a by-product of the sucrose phosphorylase reaction, into glucose. This system generated trehalose at the synthesis rate of 4.5 mmol/h in the same final yield.Trehalose (1-α-d-glucopyranosyl-α-d-glucopyranoside) is a nonreducing disaccharide with an α,α-1,1 glycosidic linkage and is widely distributed in plants, insects, fungi, yeast, and bacteria (7). Due to the absence of reducing ends in trehalose, it is highly resistant to heat, pH, and Maillard’s reaction (24). In trehalose-producing organisms, this compound may serve as an energy reserve, a buffer against stresses such as desiccation and freezing, and a protein stabilizer (5, 7, 26, 31, 32). If trehalose can be produced economically, then it has potential commercial applications as a sweetener, a food stabilizer, and an additive in cosmetics and pharmaceuticals (6, 25). Recently, trehalose production through fermentation of yeast (17) and Corynebacterium (30), enzymatic processes from starch (18, 34) and maltose (19, 22, 23, 33), and extraction from transformed plants (10) has been reported.Our approach to trehalose production is to use an enzymatic process to produce trehalose from sucrose, one of the least expensive sugars. Since sucrose is efficiently converted to α-d-glucose 1-phosphate (α-d-glucose 1-P) and fructose by sucrose phosphorylase (SPase), we screened microorganisms for an enzyme that converts α-d-glucose 1-P to trehalose on the assumption that the combination of the putative trehalose synthase (TSase) and SPase would convert sucrose into trehalose. Although similar enzyme activities have been reported in the basidiomycete Flammulina velutipes (11) and in the yeast Pichia fermentans (27), these enzymes have not been well characterized.Our objectives were (i) to screen microorganisms, primarily fungi, for TSase activity; (ii) to purify and characterize the TSase; (iii) to identify the enzymatic process by which trehalose is produced from sucrose; and (iv) to identify an enzymatic process for production of trehalose from sucrose in which the fructose component is also converted to trehalose.  相似文献   

2.
Trehalose phosphorylase (EC 2.4.1.64), which catalyzes the reversible reaction of phosphorolysis and synthesis of trehalose, was purified to homogeneity from a cell-free extract of Micrococcus varians strain No. 39. The enzyme was shown to have a molecular weight of 570,000 to 580,000 by gel filtration, and to have a subunit of molecular weight of 105,000 by SDS–polyacrylamide gel electrophoresis. The stoichiometry of the reaction between trehalose, Pi, glucose, and β-glucose 1-phosphate was 1: 1: 1: 1 (molar ratio). The enzyme had high specificity for trehalose, glucose, and β-glucose 1-phosphate. The Kms for trehalose, Pi, glucose, and β-glucose 1-phosphate were 10, 3.1, 23, and 38mM, respectively. The kcats were 200s?1 for trehalose phosphorolysis and 660s?1 for trehalose synthesis. The enzyme was inhibited by validamycin A, validoxylamine A, 1-deoxynojirimycin, and Cu2 + during trehalose phosphorolysis, and by Cu2 +, Zn2 +, and Ni2 + during trehalose synthesis. Inhibition competitive against trehalose was noted with validamycin A, validoxylamide A, and 1-deoxynojirimycin. Initial velocity, product inhibition, and dead-end inhibition studies suggested that both trehalose phosphorolysis and trehalose synthesis proceeded through an ordered Bi Bi mechanism.  相似文献   

3.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

4.
Glycogen phosphorylase in the vegetative mycelium ofFlammulina velutipes converts glycogen to α-glucose 1-phosphate (G1P) in the colony during fruit-body development. Glycogen may contribute to the synthesis of trehalose as the starting material in the vegetative mycelium during the fruiting process of the colony, and the trehalose produced is translocated into the fruit-bodies as the main carbohydrate substrate for their development. Trehalose phosphorylase activity in the vegetative mycelium was at a relatively high level until fruit-body initiation, suggesting the turnover of this disaccharide during the vegetative stage of the colony development. Trehalose phosphorylase activity in the stipes showed a peak level at the early phase of fruit-body development, suggesting the continuing phosphorolysis of trehalose by this enzyme. The stipes also showed a high specific activity of phosphoglucomutase at a sufficient level to facilitate the conversion of G1P to α-glucose 6-phosphate (G6P). In the pilei a large amount of G1P remained until the growth of the fruit-bodies ceased. Trehalase activities in the stipes and pilei were at a very low level, and this enzyme may not contribute to the catabolism of trehalose in the fruit-body development.  相似文献   

5.
Abstract A range of microorganisms was screened for new and high producer strains of trehalose phosphorylase (EC 2.4.1.64). Trehalose phosphorylase activity was found in cells of actinomycetes of the genera Actinomadura, Amycolata, Catellatospora, Kineosporia , and Nocardia . Among them, Catellatospora ferruginea showed the highest enzyme activity. Trehalose phosphorylase from C. ferruginea was able to catalyse both the phosphorolysis of trehalose into β-glucose 1-phosphate and d-glucose and the synthesis of trehalose from β-glucose 1-phosphate and d-glucose.  相似文献   

6.
A novel phosphorylase from Clostridium phytofermentans belonging to the glycoside hydrolase family (GH) 65 (Cphy1874) was characterized. The recombinant Cphy1874 protein produced in Escherichia coli showed phosphorolytic activity on nigerose in the presence of inorganic phosphate, resulting in the release of d-glucose and β-d-glucose 1-phosphate (β-G1P) with the inversion of the anomeric configuration. Kinetic parameters of the phosphorolytic activity on nigerose were k cat = 67 s−1 and K m = 1.7 mM. This enzyme did not phosphorolyze substrates for the typical GH65 enzymes such as trehalose, maltose, and trehalose 6-phosphate except for a weak phosphorolytic activity on kojibiose. It showed the highest reverse phosphorolytic activity in the reverse reaction using d-glucose as the acceptor and β-G1P as the donor, and the product was mostly nigerose at the early stage of the reaction. The enzyme also showed reverse phosphorolytic activity, in a decreasing order, on d-xylose, 1,5-anhydro-d-glucitol, d-galactose, and methyl-α-d-glucoside. All major products were α-1,3-glucosyl disaccharides, although the reaction with d-xylose and methyl-α-d-glucoside produced significant amounts of α-1,2-glucosides as by-products. We propose 3-α-d-glucosyl-d-glucose:phosphate β-d-glucosyltransferase as the systematic name and nigerose phosphorylase as the short name for this Cphy1874 protein.  相似文献   

7.
We have cloned and sequenced the gene encoding cellobiose phosphorylase from Cellulomonas uda and report high yield production in Escherichia coli of a functional recombinant enzyme containing an N-terminal metal affinity fusion peptide. Use of heterologous gene expression increases the space-time yield of active phosphorylase by three orders of magnitude, compared to production of the enzyme with the natural organism. The full-length phosphorylase is a 91.3 kDa protein that consists of 821 amino acids and whose primary structure shares significant residue identity with different members of glycosyltransferase family 36. Purified enzyme was obtained in 39% overall yield by using copper-chelate and hydroxyapatite chromatographies. A comparative steady-state kinetic analysis for enzymatic reactions in the directions of phosphorolysis and synthesis of cellobiose at 30 °C and pH 6.6 demonstrates that the catalytic properties of the natural enzyme are retained completely in the recombinant cellobiose phosphorylase. The ability of the phosphorylase to utilize - -glucose 1-fluoride (G1F) as alternate glucosyl donor in place of - -glucose 1-phosphate (G1P) is exploited for the synthesis of β-1,4-glucosides under thermodynamic control in close to 100% yield.  相似文献   

8.
Metabolism of trehalose, α,d-glucopyranosyl-α,d-glucopyranoside, was studied in nodules of Bradyrhizobium japonicum-Glycine max [L.] Merr. cv Beeson 80 symbiosis. The nodule extract was divided into three fractions: bacteroid soluble protein, bacteroid fragments, and cytosol. The bacteroid soluble protein and cytosol fractions were gel-filtered. The key biosynthetic enzyme, trehalose-6-phosphate synthetase, was consistently found only in the bacteroids. Trehalose-6-phosphate phosphatase activity was present both in the bacteroid soluble protein and cytosol fractions. Trehalase, the most abundant catabolic enzyme was present in all three fractions and showed two pH optima: pH 3.8 and 6.6. Two other degradative enzymes, phosphotrehalase, acting on trehalose-6-phosphate forming glucose and glucose-6-phosphate, and trehalose phosphorylase, forming glucose and β-glucose-1-phosphate, were also detected in the bacteroid soluble protein and cytosol fractions. Trehalase was present in large excess over trehalose-6-phosphate synthetase. Trehalose accumulation in the nodules would appear to be predicated on spatial separation of trehalose and trehalase.  相似文献   

9.
The genomic DNA and cDNA for a gene encoding a novel trehalose synthase (TSase) catalyzing trehalose synthesis from α-d-glucose 1-phosphate and d-glucose were cloned from a basidiomycete, Grifola frondosa. Nucleotide sequencing showed that the 732-amino-acid TSase-encoding region was separated by eight introns. Consistent with the novelty of TSase, there were no homologous proteins registered in the databases. Recombinant TSase with a histidine tag at the NH2-terminal end, produced in Escherichia coli, showed enzyme activity similar to that purified from the original G. frondosa strain. Incubation of α-d-glucose 1-phosphate and d-glucose in the presence of recombinant TSase generated trehalose, in agreement with the enzymatic property of TSase that the equilibrium lay far in the direction of trehalose synthesis. Received: 12 January 1998 / Received revision: 20 February 1998 / Accepted: 20 March 1998  相似文献   

10.
Sucrose phosphorylase utilizes a glycoside hydrolase-like double displacement mechanism to convert its disaccharide substrate and phosphate into alpha-d-glucose 1-phosphate and fructose. Site-directed mutagenesis was employed to characterize the proposed roles of Asp(196) and Glu(237) as catalytic nucleophile and acid-base, respectively, in the reaction of sucrose phosphorylase from Leuconostoc mesenteroides. The side chain of Asp(295) is suggested to facilitate the catalytic steps of glucosylation and deglucosylation of Asp(196) through a strong hydrogen bond (23 kJ/mol) with the 2-hydroxyl of the glucosyl oxocarbenium ion-like species believed to be formed in the transition states flanking the beta-glucosyl enzyme intermediate. An assortment of biochemical techniques used to examine the mechanism of alpha-retaining glucosyl transfer by Schizophyllum commune alpha,alpha-trehalose phosphorylase failed to provide evidence in support of a similar two-step catalytic reaction via a covalent intermediate. Mutagenesis studies suggested a putative active-site structure for this trehalose phosphorylase that is typical of retaining glycosyltransferases of fold family GT-B and markedly different from that of sucrose phosphorylase. While ambiguity remains regarding the chemical mechanism by which the trehalose phosphorylase functions, the two disaccharide phosphorylases have evolved strikingly different reaction coordinates to achieve catalytic efficiency and stereochemical control in their highly analogous substrate transformations.  相似文献   

11.
The distribution of α-glucose 1-phosphate forming (α-type) trehalose phosphorylase and trehalase activities in various fungi was surveyed. α-Type phosphorylase occurred in the mycelia and fruit-bodies of Agaricales and Aphyllophorales in the Holobasidiomycetidae, and at least one species of Gasteromycetes, but not in Tremellaceae or Auriculariales of the Phragmobasidiomycetidae, Heterobasidiomycetes or Hemibasidiomycetes. The test fungi in the Ascomycotina and Deuteromycotina, and the yeasts of Basidiomycotina, showed different trehalase activities, but no trehalose phosphorylase activity. The test organisms showed different levels of trehalase activity. The fruit-bodies of most mushrooms showed higher activities of α-type trehalose phosphorylase than did the mycelia.  相似文献   

12.
A novel type of trehalose phosphorylase was found in a basidiomycete. Flammulina velutipes . The enzyme catalyzes both the reversible phosphorolysis of trehalose to form α-glucose 1-phosphate and glucose and also the synthesis of trehalose. Comparison of the specific activity of trehalose phosphorylase with that of trehalase suggested that the function of the former enzyme was more important in the fruit-bodies of this fungus.  相似文献   

13.
Pleurotus ostreatus produced a high activity of α-glucose 1-phosphate (α-Glc 1-P) forming trehalose phosphorylase in vegetative mycelia and fruit-bodies. The enzyme was purified to homogeneity from the fruit-bodies by a procedure involving ammonium sulfate fractionation, DEAE-cellulose column chromatographies and cellulose phosphate column chromatographies. The enzyme catalyzes both the phosphorolysis of trehalose to produce α-Glc 1-P and glucose, and the synthesis of trehalose. It was not active toward other α- or β-glucosyl disaccharides and polysaccharides. The optimum pH was 7.0 for phosphorolysis and 6.4 for synthesis of trehalose. The Km values for trehalose and Pi in phospholytic reaction were 75 mM and 4.2 mM, respectively. Those for glucose and α-Glc 1-P in synthetic reaction were 505 mM and 38 mM, respectively. The estimated molecular mass by the sedimentation equilibrium method using an ultracentrifuge was 120 kDa. The molecular mass of the subunit (61 kDa) by SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a dimer of two identical subunits. The addition of glycerol higher than 25% into the enzyme solution stabilized its activity. The removal of phosphorus ions from the enzyme solution, by means of dialysis or electrophoresis, caused inactivation of the enzyme, probably by dissociation of the holoenzyme into the subunit proteins.  相似文献   

14.
Cell-free extracts from Saccharomyces cerevisiae catalyzed the incorporation of glucosyl residues from UDP-[U-14C]glucose into β-1, 3-glucans which contained a significant proportion of β-1, 6-glycosidic linkages. When GDP-[U-14C]-glucose was used as substrate only trace amounts of glucose were incorporated. Activity of β-glucan synthetase was distributed among membrane and cell wall fractions, specific activity being higher in this latter. β-Glucan synthesized by membrane and cell wall fractions contained 0.6% and 2.5% of β-1, 6-glycosidic linkages respectively. A marked decrease in the activity of β-glucan synthetase occurred as the cells aged. Significant activity of glycogen synthetase was detected only in cells which had reached the stationary phase of growth.  相似文献   

15.
Tsai CM  Hassid WZ 《Plant physiology》1973,51(6):998-1001
UDP-d-glucose, at a micromolar level in the presence of MgCl2 and oat (Avena sativa) coleoptile particulate enzyme which contains both β-(1 → 3) and β-(1 → 4) glucan synthetases, produces glucan with mainly β-(1 → 4) glucosyl linkages. An activation of β-(1 → 3) glucan synthetase by UDP-d-glucose and a decrease in the formation of β-(1 → 3) glucan in the presence of MgCl2 have been observed. However, at high substrate concentration (≥ 10−4m), the activation of β-(1 → 3) glucan synthetase is so pronounced that the formation of β-(1 → 3) glucosyl linkage predominates in synthesized glucan regardless of the presence of MgCl2. These observations may explain the striking shift in the composition of glucan of particulate enzyme from a β-(1 → 4) to β-(1 → 3) glucosyl linkage when UDP-d-glucose concentration is raised from a low concentration (≤ 10−5m) to a higher concentration (≥ 10−4m).  相似文献   

16.
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.  相似文献   

17.
Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0–8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1?1)-α-d-Manp6P, was synthesized with 51% yield.  相似文献   

18.
A number of streptomycetes were examined for their ability to synthesize trehalose phosphate as well as for the presence of α,α-trehalose. In each case, an enzyme system was demonstrated which catalyzed the transfer of glucose from guanosine diphosphate-glucose to glucose-6-phosphate to form trehalose phosphate. Thus, this group of organisms appears to synthesize trehalose phosphate by a different mechanism from that described in insects, yeast, and fungi. In addition, trehalose was isolated from each of these organisms. In several of these cases, crystallization of the sugar and determination of the physical properties showed that the sugar was α,α-trehalose.  相似文献   

19.
Abstract

Sucrose phosphorylase is a bacterial transglucosidase that catalyzes conversion of sucrose and phosphate into α-D-glucose-1-phosphate and D-fructose. The enzyme utilizes a glycoside hydrolase-like double displacement mechanism that involves a catalytically competent β-glucosyl enzyme intermediate. In addition to reaction with phosphate, glucosylated sucrose phosphorylase can undergo hydrolysis to yield α-D-glucose or it can decompose via glucosyl transfer to a hydroxy group in suitable acceptor molecules, giving new α-D-glucosidic products. The glucosyl acceptor specificity of sucrose phosphorylase is reviewed, focusing on applications of the enzyme in glucoside synthesis. Polyhydroxylated compounds such as sugars and sugar alcohols are often glucosylated efficiently. Aryl alcohols and different carboxylic acids also serve as acceptors for enzymatic transglucosylation. The natural osmolyte 2-O-(α-D-glucopyranosyl)-sn-glycerol (GG) was prepared by regioselective glucosylation of glycerol from sucrose using the phosphorylase from Leuconostoc mesenteroides. An industrial process for production of GG as active ingredient of cosmetic formulations has been recently developed. General advantages of sucrose phosphorylase as a transglucosylation catalyst lie in the use of sucrose as a high-energy glucosyl donor and the usually weak hydrolase activity of the enzyme towards substrate and product.  相似文献   

20.
β-D -Glucose-1-phosphate (βGlc1P) is an efficient glucosyl donor for both enzymatic and chemical glycosylation reactions but is currently very costly and not available in large amounts. This article provides an efficient production method of βGlc1P from trehalose and phosphate using the thermostable trehalose phosphorylase from Thermoanaerobacter brockii. At the process temperature of 60°C, Escherichia coli expression host cells are lysed and cell treatment prior to the reaction is, therefore, not required. In this way, the theoretical maximum yield of 26% could be easily achieved. Two different purification strategies have been compared, anion exchange chromatography or carbohydrate removal by treatment with trehalase and yeast, followed by chemical phosphate precipitation. In a next step, βGlc1P was precipitated with ethanol but this did not induce crystallization, in contrast to what is observed with other glycosylphosphates. After conversion of the product to its cyclohexylammonium salt, however, crystals could be readily obtained. Although both purification methods were quantitative (>99% recovery), a large amount of product (50%) was lost during crystallization. Nevertheless, a production process for crystalline βGlc1P is now available from the cheap substrates trehalose and inorganic phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号