首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
褐菖鲉的听觉阈值研究   总被引:1,自引:0,他引:1  
利用听觉诱发电位记录技术研究了褐菖鲉(Sebasticus marmoratus)的听觉阈值。通过采用听觉生理系统记录和分析了8尾褐菖鲉对频率范围在100—1000 Hz的7种不同频率的声音刺激的诱发电位反应。结果表明, 褐菖鲉的听觉阈值在整体上随着频率增加而增加, 对100—300 Hz的低频声音信号敏感, 最敏感频率为150 Hz, 对应的听觉阈值为70 dB re 1 μPa。褐菖鲉的听觉敏感区间与其发声频率具有较高的匹配性, 表明其声讯交流的重要性。同时, 人为低频噪声可能对其声讯交流造成影响。  相似文献   

2.
The possibility of using intense sound as an acoustic barrier for downstream migrating smolt of the Atlantic salmon ( Salmo salar ) was studied by observing, the reactions of smolt to 10 and 150 Hz sounds in a small river. At the observation site the river branched into a main course and a minor channel, the latter rejoining the main stream after 30 m. The sound sources were positioned at the lower end of the channel. The number of smolt re-entering the mam stream at the lower end of the channel was recorded during alternating periods with and without sound. Intense 150 Hz sound had no observable effects on the smolt, even at intensities 114 dB above the hearing threshold at this frequency. At intensities above 1.0. 10−2ms−2 the 10 Hz sound was an effective deterrent for the smolt, which turned and left the channel at the upstream branching point.  相似文献   

3.
A 10-Hz frequency sound caused flight or avoidance responses in juvenile spring chinook salmon Oncorhynchus tshawytscha and rainbow trout O. mykiss . Groups of fish were placed in 3-m diameter circular tanks with a water depth of 1 m. The sound source was a 25-cm diameter aluminium tube with a piston in one end. The piston was driven back and forth by an eccentric coupling to an electric motor at a frequency of 10 Hz and with peak to peak amplitude of 4 cm. The sound source was turned on for 5 s when the fish was within 1 m. Initial tests always resulted in a strong flight response, but after three to four tests the fish more typically simply swam away as far as possible from the source. This avoidance response did not habituate even after 20 trials.  相似文献   

4.
Environmental assessments of underwater noise on marine species must be based on species-specific hearing abilities. This study was to assess the potential impact of underwater noise from the East China Sea Bridge wind farm on the acoustic communication of the marbled rockfish. Here, the 1/3 octave frequency band of underwater noise was 125 Hz with the level range of 78–96 dB re 1 μPa, recorded at distances between 15-20m from the foundation at wind speed of 3–5 m/s. Auditory evoked potential (AEP) and passive acoustic techniques were used to determine the hearing abilities and sound production of the fish. The resultes showed the lowest auditory threshold of Sebastiscus marmoratus was 70 dB at 150 Hz matching the disturbance sound ranging 140–180 Hz, which indicating the acoustic communication used in this species. However, the frequency and level of turbine underwater noise overlapped the auditory sensitivity and vocalization of Sebastiscus marmoratus. The wind turbine noise could be detected by fish and may have a masking effect on their acoustic communication. This result can be applied for further to the assessent of fish species released into offshore wind farm marine ranch.  相似文献   

5.
The pure-tone thresholds of four domestic female chickens were determined from 2 Hz to 9 kHz using the method of conditioned suppression/avoidance. At a level of 60 dB sound pressure level (re 20 μN/m2), their hearing range extends from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 dB at 2 kHz. Chickens have better sensitivity than humans for frequencies below 64 Hz; indeed, their sensitivity to infrasound exceeds that of the homing pigeon. However, when threshold testing moved to the lower frequencies, the animals required additional training before their final thresholds were obtained, suggesting that they may perceive frequencies below 64 Hz differently than higher frequencies.  相似文献   

6.
Concern regarding the spread of silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthysc nobilis) through the Illinois River has prompted the development of an Acoustic Fish Deterrent (AFD) system. The application of this technology has resulted in a need to understand the auditory physiology of fish other than the target species, in order to minimise the effect of the AFD barrier on the ecology of indigenous fish populations. To this end, both the structures involved in sound reception and the hearing abilities of the paddlefish (Polyodon spathula) and the lake sturgeon (Acipenser fulvescens) are studied here using a combination of morphological and physiological approaches, revealing that both fish are responsive to sounds ranging in frequency from 100 to 500 Hz. The lowest hearing thresholds from both species were acquired from frequencies in a bandwidth of between 200 and 300 Hz, with higher thresholds at 100 and 500 Hz. The rationale for studying hearing in P. spathula and A. fulvescens in particular, is the value placed on them by both the commercial caviar producing industry and by the recreational fisheries sector. The hearing abilities of twelve P. spathula and twelve A. fulvescens were tested in sound fields dominated by either sound pressure or particle motion, with the results showing that acipenseriform fish are responsive to the motion of water particles in a sound field, rather than the sound pressure component. In this study, we measure the intensity of the sound field required to evoke threshold responses using a pressure sensitive hydrophone, as pressure dominated sound fields are the most audible acoustic condition for specialists like H. molitrix and A. nobilis (the target species). The results of the auditory examination clearly show that P. spathula and A. fulvescens are not sensitive to sound pressure, and will therefore have a significantly higher deterrent threshold than H. molitrix and A. nobilis in a pressure dominated sound field.  相似文献   

7.
We have investigated responses of the auditory nerve fibres (ANFS) and anteroventral cochlear nucleus (AVCN) units to narrowband 'single-formant' stimuli (SFSS). We found that low and medium spontaneous rate (SR) ANFS maintain greater amplitude modulation (AM) in their responses at high sound levels than do high SR units when sound level is considered in dB SPL. However, this partitioning of high and low SR units disappears if sound level is considered in dB relative to unit threshold. Stimuli with carrier frequencies away from unit best frequency (BF) were found to generate higher AM in responses at high sound levels than that observed even in most low and medium SR units for stimuli with carrier frequencies near BF. AVCN units were shown to have increased modulation depth in their responses when compared with high SR ANFS with similar BFS and to have increased or comparable modulation depth when compared with low SR ANFS. At sound levels where AM almost completely disappears in high SR ANFS, most AVCN units we studied still show significant AM in their responses. Using a dendritic model, we investigated possible mechanisms of enhanced AM in AVCN units, including the convergence of inputs from different SR groups of ANFS and a postsynaptic threshold mechanism in the soma.  相似文献   

8.
The cues that trigger infection of fish by parasitic copepodsare largely unknown. We show that copepodids of the parasiticcopepod Lepeophtheirus salmonus respond to uniform, linear accelerations,which are similar to those found in front of a swimming fish.Copepodid responses to vibrations at 1, 3, 5 and 10 Hz frequencywere filmed and analysed. The animals were stimulated in a completelywater-filled, clear perspex chamber, which was suspended likea swing in four wires from a steel frame. The chamber was movedby a vibrator which was fed amplified signals from a sine waveoscillator. On stimulation, copepodids responded by executingswimming bursts of 1–3 s duration. There was no apparentpreferred swimming direction. Sensitivity was highest at 3 Hz,with a threshold value of 5 x 10–3 m s–2 (rms).At 1 Hz the threshold was <6 dB higher, and sensitivity wasmarkedly reduced at 10 Hz, where the threshold was 1.8 x 10–1m s–2 rms. These results indicate that the copepodidsmay react to the near-field accelerations produced within centimetresof a swimming fish. Acceleration sensitivity may therefore bea cue that triggers high-speed swimming and subsequent infestationof the host. If this ability is present in holoplanktonic copepods,it may facilitate detection and escape from predatory fish.  相似文献   

9.
Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae)   总被引:4,自引:3,他引:1  
1. In the present work, we show that in flight, bushcrickets not previously known to respond to ultrasound alter their flight course in response to ultrasonic stimuli. Such stimuli elicit in flying Neoconocephalus ensiger an extension of the front and middle legs along the body and a rapid closure of all 4 wings (Fig. 1). This is a short latency acoustic startle response to ultrasound, consistent with acoustic startle responses of other insects. 2. The percentage of trials on which acoustic startle responses were elicited was maximum (90%) for sound frequencies ranging from 25 to at least 60 kHz. No acoustic startle response was observed at frequencies of 5 or 10 kHz (Fig. 2). The threshold for the response was roughly 76 dB between 25 to 60 kHz (Fig. 2) and the behavioral latency was 45 ms (Fig. 3). Recordings from flight muscles show that they cease discharging during the acoustic startle response (Fig. 4). 3. The characteristics of the acoustic startle response match those of an auditory interneuron called the T-neuron. The frequency sensitivity of this neuron is greatest for sound frequencies ranging from 13 to 60 kHz (Fig. 6). Moreover, we found that the neuron produces many more spikes to ultrasound (30 kHz) of increasing intensities than to a conspecific communication sound, whose dominant frequency is 14 kHz (Fig. 7).  相似文献   

10.
Summary Classical conditioning was employed to test the sensitivity of cephalopods to vibrations between 1 and 100 Hz generated in a standing wave acoustic tube. The animals were trained to associate sound stimuli with a weak electric shock, and the recorded conditioned responses were changes in breathing and jetting activity. Five specimens of Sepia officinalis were tested, and all responded to these low frequency sounds. The relevant stimulus parameter was particle motion rather than sound pressure. The threshold values (measured as particle acceleration) decreased towards lower frequencies in the tested range, reaching values below 4 × 10-3 m/s2. The thresholds in the most sensitive range may have been masked by the considerable background noise at the experimental site (Naples). Two individuals of Octopus vulgaris and one Loligo vulgaris were also tested, and showed a similar sensitivity to low frequency sound.  相似文献   

11.
The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species'' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r2 = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or −15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140–150 dB re 1 µPa or −33 to −23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9–2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.  相似文献   

12.
The acoustic intensity discrimination ability of the oscar (Astronotus ocellatus), a cichlid fish, was investigated using an automated positive reward method. Intensity discrimination thresholds (I, in dB) for 7-s continuous pure tone signals were measured both as functions of sound intensity above thresholds, i.e., sensation levels, (SL)(+10 dB, +20 dB and +30 dB) and frequency (200 Hz, 500 Hz, and 800 Hz). I at 500 Hz for +10 dB, +20 dB, and +30 dB SLs are 8.9, 5.5, and 3.3 dB, respectively. I (at+20 dB SL) for 200 Hz, 500 Hz, and 800 Hz are 4.5, 5.5, and 9.3 dB, respectively. Despite having poor auditory sensitivity (narrow frequency range and high thresholds), the intensity discrimination ability of the oscar follows the general trends of previously studied fish species, however, with higher thresholds.  相似文献   

13.
Summary The intact ear of the lemon shark,Negaprion brevirostris, is sensitive to sound at low frequencies by electrophysiological criteria. The click-evoked compound action potential of the eighth nerve has a dynamic range of at least 30 dB, with a latency shortening of 120 to 170 s/dB and an amplitude increase of 4 to 11%/dB relative to a nearly saturated response. The shape of the potential is dependent on the click phase and with the top of the head out of water these potentials are evoked by clicks with air sound pressure levels as low as 19.5 dB re 1 bar and velocity levels in the water as low as 23 dB re 1 var. The calculated displacement thresholds range from 5×10–8 to 4×10–7 cm for this response, overlapping and extending slightly below the thresholds previously reported for whole animals. The frequency sensitivity for this measure of the ear's response also agrees with behavioral data, suggesting that the ear is the primary site for sound detection.Units in the eighth nerve fall into three classes: regularly spontaneous and non-acoustic, irregularly spontaneous and acoustic, and nonspontaneous and acoustic. The best excitatory frequencies for the acoustic units range from 375 Hz down to 31 Hz if not lower, with the majority below 200 Hz.There are two maculae in this ear that are capable of detecting sound. One, the macula neglecta, is a non-otolithic detector composed of two large patches of sensory epithelium that line the walls of the posterior canal duct and extend cilia complexes toward a gelatinous cupula that fills the lumen of the duct. Units in the branch of the eighth nerve that serves this macula are responsive to sound that appears to be transmitted through parietal fossa connective tissue and a dorsal opening in the otic capsule wall.The other sound detector is the macula of the otolithic sacculus. In juvenile lemon sharks this epithelium contains an estimated 300,000 hair cells that extend their cilia toward a large mass of otoconia.It is proposed that these two maculae may detect sound by dissimilar mechanisms that provide different directional responses and possibly different frequency responses and might allow unambiguous sound localization.Abbreviation CAP compound action potential The author gratefully acknowledges the generous guidance and support given by Dr. Theodore H. Bullock during the course of this study. The assistance of Dr. Bullock's staff and the staff of the Hubbs-Sea World Research Institute and the editorial advice of Drs. T.H. Bullock, W.F. Heiligenberg, R.H. Rosenblatt, R. Galambos, and A.D. Grinnell also are gratefully acknowledged. This work was supported by N.S.F. and N.I.H. grants to Dr. Theodore H. Bullock and a private grant to Dr. Bullock from Mr. Milton Shedd.  相似文献   

14.
Sound production during competitive feeding in the grey gurnard   总被引:2,自引:0,他引:2  
The acoustic repertoire of captive grey gurnard Eutrigla gurnardus during competitive feeding consisted of three types of sound: knocks, grunts and growls. Knocks were audible as a single sound, whereas grunts and growls were perceived as longer, pulsed sounds to the human ear. Typically, knocks were composed of 1–2 pulses, grunts of 4–8 pulses and growls >10 pulses. Growls were longer and had shorter pulse periods than grunts. All sound types had peak frequencies of c . 500 Hz. The sequences of behaviours observed during feeding interactions suggest that grey gurnard obtain food both by scramble and contest tactics. Competing fish emitted knocks mainly while grasping a food item and also during other non‐agonistic behaviour, suggesting that knock production may reflect a state of feeding arousal but could also serve as a warning of the forager's presence to nearby competitors. Grunts were mainly emitted during frontal displays, which were the most frequent behavioural act preceding grasps, suggesting that they may play a role in deterring other fish from gaining access to disputed food items.  相似文献   

15.
The present experiment investigated whether or not auditory responses of the middle and/or inner ear in guinea pigs to low frequency sound stimuli [ 60 Hz-2 kHz at 90-120 dB(SPL) ] exhibited the harmonic distortion phenomenon resulting from cochlear microphonics (CM). Measurement of CM leading in turn I by the differential electrode recording method involved measurement of 50 microV isopotential responses, output voltages and CM wave form distortion at each constant sound pressure. The results obtained were as follows: (1) On the 50 microV isopotential response curve and the output voltage curves, the changes at 60-90 Hz were different from those at higher frequencies. (2) At stimuli of 90 or 100 dB(SPL), CM wave form distortion appeared frequently at frequencies below 120 Hz, but were less pronounced above approximately 200 Hz. (3) When raised to 110 and 120 dB(SPL), almost all CM wave forms were distorted at all test frequencies between 60 and 500 Hz. (4) The patterns of CM wave form distortion at frequencies below approximately 120 Hz showed peak clipping and triangular wave distortions, while those at frequencies above approximately 200 Hz showed little of these distortions.  相似文献   

16.
Schooling chum salmon Oncorhynchus keta were biased towards the water surface (median position <1 m) under isothermal conditions (10° C) in a water column simulator (WCS). Thermal stratification (24/10° C) inhibited upward movement with fish congregating at the thermocline and displaying a clear avoidance of potentially lethal surface waters. A tri-phase model based on piece-wise nonlinear regression was used to describe the distribution shifts of chum salmon during a change from isothermal to thermally stratified conditions. Fish distribution was consistent with thermoregulatory behaviour and exhibited 'attraction', 'preference' and 'avoidance' phases. The thermal preference of 50% of the fish lay between 12·2 and 20·2° C, however, >83·5% of the fish occupied a 'preferred' temperature range of 13·7–17·9° C. The mean temperature at which 50% of chum salmon avoided rising temperature by shifting deeper in the water column and using the cooler thermocline was 20·2° C, and 90% avoidance occurred at 22·9° C. Behavioural responses to thermal stratification were consistent amongst underyearling fish of differing size and age.  相似文献   

17.
1. Averaged evoked responses from multiple electrodes in the goldfish midbrain (torus semicircularis) area were recorded in response to acoustic stimulation by loudspeaker and to direct vertical vibration of the head. 2. Relative pressure and displacement sensitivity was such that in the far field, the response to sound pressure would dominate the response to particle motion by 40-90 dB. 3. Swimbladder deflation caused a flat (70-1000 Hz) loss in pressure sensitivity ranging from 20 to over 50 dB, and led to an enhanced response to vibration at low frequencies. 4. The goldfish midbrain is not homogeneous with regard to relative pressure and motion sensitivity.  相似文献   

18.
The threshold of the acoustic reflex and its pattern in response to different intersity stimuli, was investigated by means of the signal-averaging technique in 10 normal ears. Trains of tone bursts between 100 and 0 dB HL were used. The frequencies tested were 500, 1000, 2000 and 4000 Hz. In all subjects the pattern of the acoustic reflex for stimuli between 110 and 100 dB HL was biphasic, with an initial positive plateau followed by a longer negative one. For stimuli < 80 dB HL the pattern of the reflex was monophasic, characterized by a single positive peak (latency between 120 and 170 msec).  相似文献   

19.
Abstract:  We tested the hypothesis that the webbing clothes moth, Tineola bisselliella (Hum.) (Lep., Tineidae), uses sonic signals in addition to pheromonal signals for communication. To record sound from individual or groups of moths of either or both sexes, we used a digital recording system, microphones sensitive to sonic and/or ultrasonic frequencies, and speakers capable of emitting sonic and ultrasonic sound. In a soundproof environment, male T. bisselliella produced sounds of 27 decibels (dB, sound pressure level; 0 dB corresponds to 20  μ Pa), with a base frequency of 40–50 Hz and a harmonic frequency of 80–100 Hz. Sound intensity and frequency increased to 55 dB and 65–75 Hz (with ≥3 harmonic frequencies), respectively, when calling males were near (<2 cm) conspecifics of either sex. There was no evidence that females produce sound and no evidence for ultrasonic sound production by either sex. In Y-tube bioassay experiments, virgin male and female T. bisselliella preferred played-back sonic signals from males to silent control stimuli, whereas mated females showed no preference for either stimulus. In arena bioassay experiments, males as well as virgin and mated females preferred played-back sonic signals from males over a white noise control. Use of pheromonal and sonic signals by T. bisselliella would be adaptive, because the capacity for sonic communication persists even if sensory adaptation or habituation to pheromonal signals occurred. This hypothesis is consistent with the fact that other inhabitants of enclosed microhabitats, such as the greater wax moth, Galleria mellonella L., and Indian meal moth, Plodia interpunctella (Hb.), have also evolved analogous multimodal communication systems.  相似文献   

20.
Recordings were made in the chick cochlear nucleus from neurons that are sensitive to very low frequency sound. The tuning, discharge rate response and phase-locking properties of these units are described in detail. The principal conclusions are: 1. Low frequency (LF) units respond to sound frequencies between 10-800 Hz. Best thresholds average 60 dB SPL, and are occasionally as low as 40 dB SPL. While behavioral thresholds in this frequency range are not available for the domestic chick, these values are in good agreement with the pigeon behavioral audiogram (Kreithen and Quine 1979). 2. About 60% of the unit population displays tuning curves resembling low-pass filter functions with corner frequencies between 50-250 Hz. The remaining units have broad band-pass tuning curves. Best frequencies range from 50-300 Hz. 3. Spontaneous discharge rate was analyzed quantitatively for LF units recorded from nucleus angularis. The distribution of spontaneous rates for LF units is similar to that seen from higher CF units (300-5000 Hz) found in the same nucleus. However, the spontaneous firing of LF units is considerably more regular than that of their higher CF counterparts. 4. Low frequency units with low spontaneous rates (SR's less than 40 spikes/s) show large driven rate increases and usually saturate by discharging once or twice per stimulus cycle. Higher SR units often show no driven rate increases. 5. All LF units show strong phase-locking at all excitatory stimulus frequencies. Vector strengths as high as 0.98 have been observed at moderate sound levels. 6. The preferred phase of discharge (relative to the sound stimulus) increases with stimulus frequency in a nearly linear manner. This is consistent with the LF units being stimulated by a traveling wave. The slope of these phase-frequency relationships provides an estimate of traveling wave delay. These delays average 7.2 ms, longer than those seen for higher CF auditory brainstem units. These observations suggest that the peripheral site of low frequency sensitivity is the very distal region of the basilar papilla, an area whose morphology differs significantly from the rest of the chick basilar papilla. 7. LF units are described whose response to sound is inhibitory at frequencies above 50 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号