首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transgenes can affect transgenic mice via transgene expression or via the so-called positional effect. DNA sequences can be localized in chromosomes using recently established mouse genomic databases. In this study, we describe a chromosomal mapping method that uses the genomic walking technique to analyze genomic sequences that flank transgenes, in combination with mouse genome database searches. Genomic DNA was collected from two transgenic mouse lines harboring pCAGGS-based transgenes, and adaptor-ligated, enzyme restricted genomic libraries for each mouse line were constructed. Flanking sequences were determined by sequencing amplicons obtained by PCR amplification of genomic libraries with transgene-specific and adaptor primers. The insertion positions of the transgenes were located by BLAST searches of the Ensembl genome database using the flanking sequences of the transgenes, and the transgenes of the two transgenic mouse lines were mapped onto chromosomes 11 and 3. In addition, flanking sequence information was used to construct flanking primers for a zygosity check. The zygosity (homozygous transgenic, hemizygous transgenic and non-transgenic) of animals could be identified by differential band formation in PCR analyses with the flanking primers. These methods should prove useful for genetic quality control of transgenic animals, even though the mode of transgene integration and the specificity of flanking sequences needs to be taken into account.  相似文献   

3.
Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes of chicken (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Fluorescence in situ hybridization (FISH) mapping on lampbrush chromosomes allowed us to distinguish closely located probes and revealed gene order more precisely. Our data extended the data earlier obtained using FISH to chicken and quail metaphase chromosomes 1–6 and Z. Extremely low levels of inter- and intra-chromosomal rearrangements in the chicken and Japanese quail were demonstrated again. Moreover, we did not confirm the presence of a pericentric inversion in Japanese quail chromosome 4 as compared to chicken chromosome 4. Twelve BAC clones specific for chicken chromosome 4p and 4q showed the same order in quail as in chicken when FISH was performed on lampbrush chromosomes. The centromeres of chicken and quail chromosomes 4 seem to have formed independently after centric fusion of ancestral chromosome 4 and a microchromosome.  相似文献   

4.
To study pseudoautosomal and bordering regions in the avian Z and W chromosomes, we used seven BAC clones from genomic libraries as DNA probes of fragments of different gametologs of the ATP5A1 gene located close to the proximal border of the pseudoautosomal region (PAR) of sex chromosomes of domestic chicken and Japanese quail. Localization of BAC clones TAM31-b100C09, TAM31-b99N01, TAM31-b27P16, and TAM31-b95L18 in the short arm of Z chromosomes of domestic chicken and Japanese quail (region Zp23-p22) and localization of the BAC clones CHORI-261-CH46G16, CHORI-261-CH33F10, and CHORI-261-CH64F22 on W chromosomes of these species and in the short arm of Z chromosomes (region Zp23-p22) were determined by fluorescence in situ hybridization with the use of W-specific probes. The difference in the localization of the BAC clones on the Z and W chromosomes is probably explained by divergence of the nucleotide sequences of different sex chromosomes located beyond the pseudoautosomal region.  相似文献   

5.
Laser microdissection has been proven a successful technique to isolate single cells or groups of cells from animal and plant tissue. Here, we demonstrate that laser microdissection is suitable to isolate subcellular parts of fungal hyphae. Dolipore septa of Rhizoctonia solani containing septal pore caps were cut by laser microdissection from sections of mycelium and collected by laser pressure catapulting. Subsequently, microdissected septa were visualised using a wheat germ agglutinin labelling of cell walls, septa and septal pore caps and scanning electron microscopy. The use of laser microdissection on fungal cells opens new ways to study subcellular fungal structures and the biochemical composition of hyphal cells.  相似文献   

6.
目的为鉴定慢病毒介导的转基因小鼠中外源基因的整合位点信息,应用接头PCR克隆整合位点旁侧序列。方法小鼠基因组总DNA酶解后与设计的接头片段连接,根据慢病毒的LTR序列设计巢式PCR引物,克隆转基因小鼠整合位点旁侧序列。结果成功克隆到转基因小鼠整合位点的旁侧序列,经过测序定位于小鼠染色体上。结论作为反向PCR的改进,本方法可用于转基因小鼠整合位点旁侧序列的克隆,为分析整合位点与外源基因表达之间的关系等提供了科学依据。  相似文献   

7.
The mechanisms of formation of intrachromosomal amplifications in tumours are still poorly understood. By using quantitative polymerase chain reaction, DNA sequencing, chromosome walking, in situ hybridization on metaphase chromosomes and whole-genome analysis, we studied two cancer cell lines containing an MYC oncogene amplification with acquired copies ectopically inserted in rearranged chromosomes 17. These intrachromosomal amplifications result from the integration of extrachromosomal DNA molecules. Replication stress could explain the formation of the double-strand breaks involved in their insertion and in the rearrangements of the targeted chromosomes. The sequences of the junctions indicate that homologous recombination was not involved in their formation and support a non-homologous end-joining process. The replication stress-inducible common fragile sites present in the amplicons may have driven the intrachromosomal amplifications. Mechanisms associating break-fusion-bridge cycles and/or chromosome fragmentation may have led to the formation of the uncovered complex structures. To our knowledge, this is the first characterization of an intrachromosomal amplification site at nucleotide resolution.  相似文献   

8.
Transgenic mice carrying an immunoglobulin mu heavy chain transgene exhibit isotype switching of the transgene. We have now characterized the mechanism of transgene switching in these mice. The site of mu transgene insertion in one transgenic line has been localized to chromosome 5 using a series of polymorphic endogenous retroviruses as genetic markers in backcross mice. The endogenous immunoglobulin heavy chain locus resides on mouse chromosome 12, which shows that transgene isotype switching can occur between two different chromosomes even though normal antibody gene switching has generally been thought to occur within one chromosome. We find that transgene isotype switching involves interchromosomal DNA recombination, and our data suggest that the same enzymatic mechanisms mediate both normal isotype switch recombination and interchromosomal transgene switching. Our findings also support the notion that the isotype switching mechanism can induce chromosomal translocations such as observed for the c-myc gene in some B cell tumors.  相似文献   

9.
Laser microbeam microdissection and laser pressure catapulting offer the possibility of separating cell compartments, thus allowing for contamination-free analysis. Using these methods, we were able to select single chloroplasts of Nicotiana tabacum. Starting from homogenized leaf material, chloroplasts were purified by differential centrifugation and applied directly onto a poly-ethylene-naphthalate membrane that was mounted on a microscope slide. Single chloroplasts were dissected under microscopic control and catapulted into a PCR tube. Subsequent PCR of a spacer region between the trnT and trnF genes verified the successful amplification of DNA from a single chloroplast. The advantage of this method compared to the use of capillaries or optical tweezers is that one is able to prepare high numbers of samples in a short time.  相似文献   

10.
Sazanov  A. A.  Sazanova  A. L.  Kozyreva  A. A.  Smirnov  A. F.  Andreozzi  L.  Federico  C.  Motta  S.  Saccone  S.  Bernardi  G. 《Russian Journal of Genetics》2003,39(6):681-686
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA–DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

11.
We detected sequences related to the avian retrovirus Rous sarcoma virus within the genome of the Japanese quail, a species previously considered to be free of endogenous avian leukosis virus elements. Using low-stringency conditions of hybridization, we screened a quail genomic library for clones containing retrovirus-related information. Of five clones so selected, one, lambda Q48, contained sequence information related to the gag, pol, and env genes of Rous sarcoma virus arranged in a contiguous fashion and spanning a distance of approximately 5.8 kilobases. This organization is consistent with the presence of an endogenous retroviral element within the Japanese quail genome. Use of this element as a high-stringency probe on Southern blots of genomic digests of several quail DNA demonstrated hybridization to a series of high-molecular-weight bands. By slot hybridization to quail DNA with a cloned probe, it was deduced that there were approximately 300 copies per diploid cell. In addition, the quail element also hybridized at low stringency to the DNA of the White Leghorn chicken and at high stringency to the DNAs of several species of jungle fowl and both true and ruffed pheasants. Limited nucleotide sequencing analysis of lambda Q48 revealed homologies of 65, 52, and 46% compared with the sequence of Rous sarcoma virus strain Prague C for the endonuclease domain of pol, the pol-env junction, and the 3'-terminal region of env, respectively. Comparisons at the amino acid level were also significant, thus confirming the retrovirus relatedness of the cloned quail element.  相似文献   

12.
13.
Transgenic animals are extensively used to model human disease. Typically, the transgene copy number is estimated, but the exact integration site and configuration of the foreign DNA remains uncharacterized. When transgenes have been closely examined, some unexpected configurations have been found. Here, we describe a method to recover transgene insertion sites and assess structural rearrangements of host and transgene DNA using microarray hybridization and targeted sequence capture. We used information about the transgene insertion site to develop a polymerase chain reaction genotyping assay to distinguish heterozygous from homozygous transgenic animals. Although we worked with a bacterial artificial chromosome transgenic mouse line, this method can be used to analyse the integration site and configuration of any foreign DNA in a sequenced genome.  相似文献   

14.
Neuron-glia interaction is involved in physiological function of neurons, however, recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Laser microdissection offers a unique opportunity to study molecular regulation in specific immunolabeled cell types. However, an adequate protocol to allow morphological and molecular analysis of rodent spinal cord astrocyte, microglia and motoneurons remains a big challenge. In this paper we present a quick method to immunolabel those cells in flash frozen sections to be used in molecular biology analyses after laser microdissection and pressure catapulting.  相似文献   

15.
In order to develop a comparative map between chicken and quail, we identified orthologous gene markers based on chicken genomic sequences and localized them on the Japanese quail Kobe-NIBS linkage map, which had previously been constructed with amplified fragment length polymorphisms. After sequencing the intronic regions of 168 genes located on chicken chromosomes 1-8, polymorphisms among Kobe-NIBS quail family parents were detected in 51 genes. These orthologous markers were mapped on eight Japanese quail linkage groups (JQG), and they allowed the comparison of JQG to chicken macrochromosomes. The locations of the genes and their orders were quite similar between the two species except within a previously reported inversion on quail chromosome 2. Therefore, we propose that the respective quail linkage groups are macrochromosomes and designated as quail chromosomes CJA 1-8.  相似文献   

16.
17.
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA--DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

18.
Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.  相似文献   

19.
A lentiviral construct for an enhanced green fluorescent protein (eGFP) driven by a chicken beta-actin promoter, cytomegalovirus enhancer, and intronic sequences from rabbit beta-globin (CAG) was used to produce transgenic lines of rats for evaluation of the usefulness of this approach in gene function studies. Fertilized eggs were collected from inbred Dahl S and outbred Sprague-Dawley rats, and approximately 100 pl of concentrated virus were microinjected into the perivitrelline space of one-cell embryos. Of 121 embryos injected, 60 pups (49.6%) were born. Transgenic rates averaged 22% in Dahl S and 14% in Sprague-Dawley rats. Copy number ranged from one to four in the founders, and the inheritance of the transgene in a subsequent F(1) population was 48.2%. The small number of insertion sites enabled us to derive inbred transgenic lines with a single copy of the transgene within one generation. Sequencing of each transgene insertion site revealed that they inserted as single copies with a preference for the introns of genes. The CAG promoter drove high levels of eGFP expression in brain, kidney, heart, and vasculature, making it very suitable for exploring the cardiovascular function of newly discovered genes. The pattern of eGFP expression was similar across five different F(1) transgenic lines, indicating that the expression of the transgene was independent of its chromosomal position. Thus lentiviral transgenesis provides a powerful tool for the production of transgenic inbred rats and will enhance the usefulness of this species in gene discovery and target validation studies.  相似文献   

20.
Chromosome-specific paint probes provide a powerful tool with wide applications in cytogenetic analysis. Here, we present a new approach using UV-laser microbeam microdissection in combination with laser-pressure catapulting, which allows the fast isolation of single chromosomes for the generation of chromosome-specific paint probes. To demonstrate the feasibility of this approach, single chromosomes were collected and amplified with degenerate oligonucleotide-primed PCR, hapten-labeled and hybridized onto normal metaphase spreads. Fluorescence in situ hybridization signals revealed specific painting of the respective chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号