首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work has been performed on 62 CBA mice. In the ventricular zone and in the external granular layer of the cerebellar anlage of embryos (13-17 days of the intrauterine development) mitotic index, labelled nuclei index, part of labelled mitoses have been counted. Parameters of the mitotic cycle of the matrix cells have been calculated by means of the graphic method. The proliferative pool value has been calculated. At malnutrition the cerebellar anlage structure retards in its maturation from the norm. For the matrix zones of the cerebellar anlage, higher indices of the proliferative activity are specific. At the same time, duration of the mitotic cycle of the matrix cells increases by 15-17%. It is possible, that retardation of histogenesis of the mouse cerebellar anlage, when developing under conditions of alimentary insufficiency depends on decreased rate of cell proliferation, as a result of prolonged mitotic cycle of the matrix cells.  相似文献   

2.
During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.  相似文献   

3.
Protracted neurogenesis occurs at different postnatal stages in different brain locations, whereby leading to site-specific adult neurogenesis in some cases. No spontaneous genesis of neurons occurs in the cerebellum after the postnatal genesis of granule cells from the external germinal layer (EGL), a transitory actively proliferating zone which is thought to be exhausted before puberty. Here, we show the protracted genesis of newly generated neuronal precursors in the cerebellar cortex of young rabbits, persisting beyond puberty. Neuroblasts generated within an actively proliferating subpial layer thus extending the postnatal EGL are arranged to form thousands of tangential chains reminiscent of those responsible for cell migration in the forebrain subventricular zone. These subpial chains cover the whole cerebellar surface from the 2nd to the 5th month of life, then disappearing after puberty. In addition, we describe the appearance of similar groups of cells at the end of granule cell genesis in the mouse cerebellum, here limited to the short period of EGL exhaustion (4-5 days). These results show common features do exist in the postnatal reorganization of secondary germinal layers of brain and cerebellum at specific stages, parallel to differences in the slowing down of cerebellar neurogenesis among mammalian species.  相似文献   

4.
In the present paper we report on experiments conducted to find out if there is a positive correlation between the destruction of meningeal cells over the newborn rat cerebellum by 6-hydroxydopamine (6-OHDA) and the subsequent development of abnormalities in cerebellar fissuration, lamination, and granule cell number. Both destruction of meningeal cells and quality and magnitude of 6-OHDA-induced cerebellar defects show the same threshold sensitivity without further dose responsiveness. Blockade of neuronal uptake 1 for catecholamines with nomifensine prevents neither destruction of meningeal cells nor the development of abnormalities in cerebellar structure after 6-OHDA treatment. Blockade of extraneuronal uptake 2 for catecholamines with normetanephrine prevents both destruction of meningeal cells and the development of typical cerebellar abnormalities after 6-OHDA treatment. All three parallel experiments suggest that there is a positive correlation between the destruction of meningeal cells and the development of abnormal cerebellar structure, indicating that meningeal cells are involved in these defective morphogenetic processes, i.e., fissuration, lamination, and cell proliferation in the external granular layer. The preferential localization of defects in cerebellar fissures indicates that, in analogy to the mesenchyme surrounding other epithelia with a branching morphogenesis, the role of meningeal cells could be the production of interstitial collagen which is necessary to stabilize the epithelial basal lamina in the fissures.  相似文献   

5.
In the postembryonic zebrafish forebrain, subpial locations of neurogenesis do exist in the early cerebellar external granular layer, and--unusually among vertebrates--in the primordial pretectal (M1) and preglomerular (M2) Anlagen as shown here with 5-bromo-2'-deoxyuridine (BrdU)/Hu-immunocytochemistry and in situ hybridization of neuroD. An intermediate BrdU incubation time of 12-16 h reveals in addition to proliferative ventricularly located cells those in M1 and M2. This BrdU saturation-labeling shows--in conjunction with a Hu-assay demonstrating earliest neuronal differentiation--that proliferating cells in M1 and M2 represent neuronal progenitors. This is demonstrated by single BrdU-labeled and double BrdU-/Hu-labeled cells in these aggregates. Further, expression of NeuroD--a marker for freshly determined neuronal cells--confirms this unusual subpial postembryonic forebrain neurogenesis.  相似文献   

6.
BDNF stimulates migration of cerebellar granule cells   总被引:20,自引:0,他引:20  
During development of the nervous system, neural progenitors arise in proliferative zones, then exit the cell cycle and migrate away from these zones. Here we show that migration of cerebellar granule cells out of their proliferative zone, the external granule cell layer (EGL), is impaired in Bdnf(-/-) mice. The reason for impaired migration is that BDNF directly and acutely stimulates granule cell migration. Purified Bdnf(-/-) granule cells show defects in initiation of migration along glial fibers and in Boyden chamber assays. This phenotype can be rescued by exogenous BDNF. Using time-lapse video microscopy we find that BDNF is acutely motogenic as it stimulates migration of individual granule cells immediately after addition. The stimulation of migration reflects both a chemokinetic and chemotactic effect of BDNF. Collectively, these data demonstrate that BDNF is directly motogenic for granule cells and provides a directional cue promoting migration from the EGL to the internal granule cell layer (IGL).  相似文献   

7.
The developing rat cerebellar cortex was studied by the rapid Golgi procedure in 200 mu thick slices and in 1--2 mu thick semithin sections poststained with toluidine-blue. Glial cells having radial fibres directed towards the pial surface were found to be present continuously in the internal granular layer during cerebellar maturation. This cell type was identified as the developing Bergmann-glia.  相似文献   

8.
The generation cycle of germinative cells (external matrix cells) in the external granular layer of the cerebellar cortex of the 10-to 11-day-old mouse was studied by radioautography following repeated injections of H3-thymidine. The generation time is 19 hr, presynthetic time 8.5 hr, DNA-synthetic time 8 hr, postsynthetic time 2 hr, and mitotic time 0.5 hr. These proliferating cells occupy the outer half of the external granular layer and make up the external matrix layer. Neuroblasts are differentiated from the external matrix cell, migrate out from the layer and accumulate in the inner half of the external granular layer to form the external mantle layer. The transit time of the neuroblasts in the external mantle layer is 28 hr. Thereafter, they migrate farther into the molecular layer and the internal granular layer. By means of long-term cumulative labeling, the rate of daily production of neuroblasts from the external matrix cell is studied in quantitative terms. It becomes clear that the entire population of the inner granule neurons arises postnatally in the external granular layer between 1 and 18 days of age and that 95% of them is produced between postnatal days 4 and 15. Finally, the fate of the cells in the external granular layer at its terminal stage was studied by marking the cells with H3-thymidine during 15–16 days of life and following their subsequent migration and developmental changes up to 21 days of life. Comparison of radioautographs taken before and after the migration disclosed that the external matrix cells give rise to a small number of neuroglia cells. This finding revealed their multipotential nature.  相似文献   

9.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

10.
A monoclonal antibody designated M2 arose from the fusion of mouse myeloma cells with splenocytes from a rat immunized with particulate fraction from early postnatal mouse cerebellum. Expression of M2 antigen was examined by indirect immunofluorescence on frozen sections of developing and adult mouse cerebellum and on monolayer cultures of early postnatal mouse cerebellar cells. In adult cerebellum, M2 staining outlines the cell bodies of granule and Purkinje cells. A weaker, more diffuse staining is seen in the molecular layer and white matter. In sections of newborn cerebellum, M2 antigen is weakly detectable surrounding cells of the external granular layer and Purkinje cells. The expression of M2 antigen increases during development in both cell types, reaching adult levels by postnatal day 14. At all stages of postnatal cerebellar development, granule cells that have completed migration to the internal granule layer are more heavily stained by M2 antibodies than are those before and in process of migration. In monolayer cultures, M2 antigen is detected on the cell surface Of all GFA protein-positive astrocytes and on more immature oligodendrocytes, that express 04 antigen but not 01 antigen. After 3 days in culture, tetanus toxinpositive neurons begin to express M2 antigen. The same delayed expression of M2 antigen on neurons is observed in cultures derived from mice ranging in age from postnatal day 0 to 10.  相似文献   

11.
Acute alcohol administration is harmful especially for the developing nervous system, where it induces massive apoptotic neurodegeneration leading to alcohol-related disorders of newborn infants. Neuroprotection against ethanol-induced apoptosis may save neurons and reduce the consequences of maternal alcohol consumption. Previously we have shown that taurine protects immature cerebellar neurons in the internal granular layer of cerebellum from ethanol-induced apoptosis. Now we describe a similar protective action for taurine in the external layer of cerebellum of 7-day-old mice. The mice were divided into three groups: ethanol-treated, ethanol + taurine-treated and controls. Ethanol (20% solution) was administered subcutaneously at a total dose of 5 g/kg (2.5 g/kg at time 0 h and 2.5 g/kg at 2 h) to the ethanol and ethanol + taurine groups. The ethanol + taurine group also received subcutaneously two injections of taurine (1 g/kg each, 1 h before the first dose of ethanol and 1 h after the second dose of ethanol). To verify apoptosis, immunostaining for activated caspase-3 and TUNEL staining were made in the mid-sagittal sections containing lobules I–X of the cerebellar vermis at 8 h after the first ethanol injection. Ethanol induced apoptosis in the cerebellar external granular layer. Taurine treatment significantly reduced the number of activated caspase-3-immunoreactive and TUNEL-positive cells. Taurine has thus a neuroprotective antiapoptotic action in the external granular layer of the cerebellum, preserving a number of neurons from ethanol-induced apoptosis.  相似文献   

12.
We have correlated the times of appearance of the neural cell adhesion molecule (N-CAM), the neuron-glia cell adhesion molecule (Ng-CAM), and the extracellular matrix protein, cytotactin, during the development of the chicken cerebellar cortex, and have shown that these molecules make different functional contributions to granule cell migration. Immunofluorescent staining showed distinct spatiotemporal expression sequences for each adhesion molecule. N-CAM was present at all times in all layers. However, the large cytoplasmic domain polypeptide of N-CAM was always absent from the external granular layer and was enriched in the molecular layer as development proceeded. Ng-CAM began to be expressed in the premigratory granule cells just before migration and later disappeared from cell bodies but remained on parallel fibers. Cytotactin, which is synthesized by glia and not by neurons, appeared first in a speckled pattern within the external granular layer and later appeared in a continuous pattern along the Bergmann glia; it was also enriched in the molecular layer. After we established their order of appearance, we tested the separate functions of these adhesion molecules in granule cell migration by adding specific antibodies against each molecule to cerebellar explant cultures that had been labeled with tritiated thymidine and then measuring the differential distribution of labeled cells in the forming layers. Anti-N-CAM showed marginal effects. In contrast, anti-Ng-CAM arrested most cells in the external granular layer, while anti-cytotactin arrested most cells in the molecular layer. Time course analyses combined with sequential addition of different antibodies in different orders showed that anti-Ng-CAM had a major effect in the early period (first 36 h in culture) and a lesser effect in the second part of the culture period, while anti-cytotactin had essentially no effect at the earlier time but had major effects at a later period (18-72 h in culture). The two major stages of cerebellar granule cell migration thus appear to be differentially affected by distinct adhesion molecules of different cellular origins, binding mechanisms, and overall distributions. The results indicated that local cell surface modulation of adhesion molecules of different specificities at defined stages and sites is essential to the formation of cerebellar cortical layers.  相似文献   

13.
The meninges have traditionally been viewed as specialized membranes surrounding and protecting the adult brain from injury. However, there is increasing evidence that the fetal meninges play important roles during brain development. Through the release of diffusible factors, the meninges influence the proliferative and migratory behaviors of neural progenitors and neurons in the forebrain and hindbrain. Meningeal cells also secrete and organize the pial basement membrane (BM), a critical anchor point for the radially oriented fibers of neuroepithelial stem cells. With its emerging role in brain development, the potential that defects in meningeal development may underlie certain congenital brain abnormalities in humans should be considered. In this review, we will discuss what is known about assembly of the fetal meninges and review the role of meningeal-derived proteins in mouse and human brain development.  相似文献   

14.
The present report describes the genesis, development and topographical distribution of ectopic cells of the external granular layer in the subarachnoid space covering the rat cerebellum. Following one intracisternal injection to newborn rats of 100 micrograms 6-hydroxydopamine (6-OHDA), the meningeal cells degenerate and are removed by phagocytosis within 24 h post injection (p.i.), leaving the cerebellar cortex without a pia-arachnoid cover. Defects appear in the basal lamina investing the cerebellar cortex 3 to 5 days p.i., and both external granule cells and 'sprouts' from Bergmann-glia endfeet grow into the subarachnoid space. The latter form large, flat glial lamellae and cover extensive areas of the denuded cerebellar surface, although they do not form a glial scar over the exposed neuropil of the cerebellar cortex. The numbers of ectopic external granule cells increase within the subarachnoid space both by proliferation and a continuous efflux of cells from the cerebellar cortex. They migrate, aggregate, and ultimately develop into granule, stellate and basket cells, the morphology of which is indistinguishable from their counterparts in situ; they make specific afferent and efferent connections, both among themselves and with the underlying cerebellar cortex and brainstem. The distribution of ectopic external granule cells and their derivatives is restricted to the anterior vermal fissures and the vermal-hemispheric junctions. The present results indicate that external granule cells and their derivatives are capable of both differentiating normally and surviving in the subarachnoid space if they become associated with glial cells and establish synaptic connections.  相似文献   

15.
Migrating cells from the external germinal layer of the newborn rat cerebellum were studied by light and electron microscopy. Each migrating cell possessed a single, broad, leading process oriented perpendicular to the pial surface. These cell processes were sometimes associated with profiles of other granule cells, but were not necessarily associated with the electron-lucent Bergmann fibers present at these early developmental stages. Migrating granule cells could be observed circumventing both blood vessels and the perikarya/processes of other cells present in the developing molecular layer. Thus, during the early stages of cerebellar ontogeny, when the migration pathway through the molecular layer is sparsely populated with cells and processes, the vertical process of a granule cell may seek actively a path of least resistance, utilizing 'contacts' with surrounding objects for avoidance, rather than as guideposts imperative for directing migration. Cellular associations observed at this stage of cerebellar development may thus be more fortuitous than requisite.  相似文献   

16.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

17.
Colonization of rat thymic anlage by the first wave of hemopoietic precursor cells (HPc) was investigated by means of transmission electron microscopy and immunocytochemistry. HPc began migration into the thymic anlage between 13 and 13.5 gestation days (GD), terminated colonization at about GD 16, and migrated sequentially through the two compartments of the thymic anlage under the control of typical populations of stromal cells. First, HPc migrated through the external compartment of the perithymic mesenchyme, tightly interconnected with fibroblasts. The type of junctions between the cells indicated that the fibroblasts played a role in the control of HPc trafficking and in their entrance to the epithelial compartment. The second stage of colonization was initiated by the entrance of HPc to the epithelial compartment and their interaction with thymic epithelial cells (TECs). Based on morphological criteria, two populations of HPc were distinguished that colonized the anlage at various stages of its development. The predominant population with ultrastructural traits common to thymocytes “homed” into the epithelial type primordium. A small number of HPc, identified by protein S-100 expression and by Birbeck’s granules as precursors of dendritic cells, colonized lymphoepithelial anlage in which subsets of cortical and medullary TECs could be distinguished. Thymocyte migration and their reciprocal interactions with cortical TECs differed from the trafficking of dendritic cells toward the medulla. The results demonstrated the influence of maturing thymocytes on the development of cortical epithelial cells and the dynamic organization of the medullary microenvironment with direct involvement of dendritic cells. This study was supported by UMS grant 501-2-0003404.  相似文献   

18.
Abundant ectopic granule cells scattered in the cerebellar molecular layer have been observed in 30-day-old hypothyroid rats. Their morphological features indicate that they must be regarded as mature heterotopic cells arrested during their migration towards the granular layer. As their impoverished dendritic trees are identical to those seen in controls, it is unlikely that the lack of thyroid hormones played a major role in the deficient dendritic outgrowth. The study of 180-day-old hypothyroid rats revealed that although ectopic granule cells remained quite numerous, their number per unit surface was lesser than in the 30-day-old hypothyroid group. This finding may be related to the capacity displayed by heterotopic neurons to establish synaptic contacts with the components of the molecular layer. This was inferred by the presence of a peculiar synaptic cell investment formed by axosomatic and somatodendritic contacts in 180-day-old hypothyroid rats which shows that the surviving ectopic granule cells manage to adapt to an adverse milieu.  相似文献   

19.
Cellular and molecular mechanisms of cerebellar granule cell migration   总被引:9,自引:0,他引:9  
The real-time observation of cell movement in brain slice preparations reveals that in the developing brain, postmitotic neurons alter their shape concomitantly with changes in the mode, direction, tempo, and rate of migration as they traverse different cortical layers. Although it has been hypothesized that orchestrated activities of multiple external cues and cell-cell contact are essential for controlling the cortical-layer-specific changes in cell migration, signaling mechanisms and external guidance cues related to the alteration of neuronal cell migration remain to be determined. In this article, we will first review recent studies on position-specific changes in granule cell behavior through different migratory terrains of the developing cerebellar cortex. We will then present possible roles for the coordinated activity of Ca2+ channels, NMDA type of glutamate receptors, and intracellular Ca2+ fluctuations in controlling cerebellar granule cell movement. Furthermore, we will discuss the crucial roles of brain-derived neurotrophic factor (BDNF), neuregulin (NRG), stromal cell-derived factor 1alpha (SDF-1alpha), ephrin-B2, and EphB2 receptor in providing directional cues promoting granule cell migration from the external granular layer (EGL) to the internal granular layer (IGL). Finally, we will demonstrate that endogenous somatostatin controls the migration of granule cells in a cortical layer-specific manner: Endogenous somatostatin accelerates granule cell movement near the birthplace within the EGL, but significantly slows down the movement near their final destination within the IGL.  相似文献   

20.
Netrin 1 is a long-range diffusible factor that exerts chemoattractive or chemorepulsive effects on developing axons growing to or away from the neural midline. Here we used tissue explants to study the action of netrin 1 in the migration of several cerebellar and precerebellar cell progenitors. We show that netrin 1 exerts a strong chemoattractive effect on migrating neurons from the embryonic lower rhombic lip at E12-E14, which give rise to precerebellar nuclei. Netrin 1 promotes the exit of postmitotic migrating neurons from the embryonic lower rhombic lip and upregulates the expression of TAG-1 in these neurons. In addition, in the presence of netrin 1, the migrating neurons are not isolated but are associated with thick fascicles of neurites, typical of the neurophilic way of migration. In contrast, the embryonic upper rhombic lip, which contains tangentially migrating granule cell progenitors, did not respond to netrin 1. Finally, in the postnatal cerebellum, netrin 1 repels both the parallel fibres and migrating granule cells growing out from explants taken from the external germinal layer. The developmental patterns of expression in vivo of netrin 1 and its receptors are consistent with the notion that netrin 1 secreted in the midline acts as chemoattractive cue for precerebellar neurons migrating circumferentially along the extramural stream. Similarly, the pattern of expression in the postnatal cerebellum suggests that netrin 1 could regulate the tangential migration of postmitotic premigratory granule cells. Thus, molecular mechanisms considered as primarily involved in axonal guidance appear also to steer neuronal cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号