首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation elongation factor 1β (EF-1β) catalyzes the exchange of bound GDP for GTP on EF-1α. The lethality of a null allele of the TEF5 gene encoding EF-1β in Saccharomyces cerevisiae was suppressed by extra copies of the TEF2 gene encoding EF-1α. The strains with tef5::TRP1 suppressed by extra copies of TEF2 were slow growing, cold sensitive, hypersensitive to inhibitors of translation elongation and showed increased phenotypic suppression of +1 frameshift and UAG nonsense mutations. Nine dominant mutant alleles of TEF2 that cause increased suppression of frameshift mutations also suppressed the lethality of tef5::TRP1. Most of the strains in which tef5::TRP1 is suppressed by dominant mutant alleles of TEF2 grew more slowly and were more antibiotic sensitive than strains with tef5::TRP1 suppressed by wild-type TEF2. Two alleles, TEF2-4 and TEF2-10, interact with tef5::TRP1 to produce strains that showed doubling times similar to tef5::TRP1 strains containing extra copies of wild-type TEF2. These strains were less cold sensitive, drug sensitive and correspondingly less efficient suppressors of +1 frameshift mutations. These phenotypes indicate that translation and cell growth are highly sensitive to changes in EF-1α and EF-1β activity.  相似文献   

2.
H. Y. Fan  H. L. Klein 《Genetics》1994,137(4):945-956
The hpr1Δ3 mutant of Saccharomyces cerevisiae is temperature-sensitive for growth at 37° and has a 1000-fold increase in deletion of tandem direct repeats. The hyperrecombination phenotype, measured by deletion of a leu2 direct repeat, is partially dependent on the RAD1 and RAD52 gene products, but mutations in these RAD genes do not suppress the temperature-sensitive growth phenotype. Extragenic suppressors of the temperature-sensitive growth have been isolated and characterized. The 14 soh (suppressor of hpr1) mutants recovered represent eight complementation groups, with both dominant and recessive soh alleles. Some of the soh mutants suppress hpr1 hyperrecombination and are distinct from the rad mutants that suppress hpr1 hyperrecombination. Comparisons between the SOH genes and the RAD genes are presented as well as the requirement of RAD genes for the Soh phenotypes. Double soh mutants have been analyzed and reveal three classes of interactions: epistatic suppression of hpr1 hyperrecombination, synergistic suppression of hpr1 hyperrecombination and synthetic lethality. The SOH1 gene has been cloned and sequenced. The null allele is 10-fold increased for recombination as measured by deletion of a leu2 direct repeat.  相似文献   

3.
Major parts of amino-acid-coding regions of elongation factor (EF)-1α and EF-2 in Trichomonas tenax were amplified by PCR from total genomic DNA and the products were cloned into a plasmid vector, pGEM-T. The three clones from each of the products of the EF-1α and EF-2 were isolated and sequenced. The insert DNAs of the clones containing EF-1α coding regions were each 1,185 bp long with the same nucleotide sequence and contained 53.1% of G + C nucleotides. Those of the clones containing EF-2 coding regions had two different sequences; one was 2,283 bp long and the other was 2,286 bp long, and their G + C contents were 52.5 and 52.9%, respectively. The copy numbers of the EF-1α and EF-2 gene per chromosome were estimated as four and two, respectively. The deduced amino acid sequences obtained by the conceptual translation were 395 residues from EF-1α and 761 and 762 residues from the EF-2s. The sequences were aligned with the other eukaryotic and archaebacterial EF-1αs and EF-2s, respectively. The phylogenetic position of T. tenax was inferred by the maximum likelihood (ML) method using the EF-1α and EF-2 data sets. The EF-1α analysis suggested that three mitochondrion-lacking protozoa, Glugea plecoglossi, Giardia lamblia, and T. tenax, respectively, diverge in this order in the very early phase of eukaryotic evolution. The EF-2 analysis also supported the divergence of T. tenax to be immediately next to G. lamblia. Received: 15 February 1996 / Accepted: 28 June 1996  相似文献   

4.
A water-soluble and neutral polysaccharide was extracted from the current pseudobulbs of Oncidium “Gower Ramsey” during the early inflorescence stage (flower stalk less than 4 cm) by hot water, precipitated with ethanol, and purified with an anion exchanger. From the data of monosaccharide composition and linkage and anomeric configuration analyses, the polysaccharide was identified as a linear β-1→4 linked mannan.  相似文献   

5.
6.
7.
The HPR1 gene of Saccharomyces cerevisae is involved in maintaining low levels of deletions between DNA repeats. To understand how deletions initiate in the absence of the Hpr1 protein and the mechanisms of recombination leading to deletions in S. cerevisiae, we have isolated mutations as suppressors of the hyper-deletion phenotype of the hpr1δ mutation. The mutations defined five different genes called HRS for hyper-recombination suppression. They suppress the hyper-deletion phenotype of hpr1δ strains for three direct repeat systems tested. The mutations eliminated the hyper-deletion phenotype of hpr1δ strains either completely (hrs1-1 and hrs2-1) or significantly (hrs3-1, hrs4-1 and hrs5-1). None of the mutations has a clear effect on the levels of spontaneous and double-strand break-induced deletions. Among other characteristics we have found are the following: (1) one mutation, hrs1-1, reduces the frequency of deletions in rad52-1 strains 20-fold, suggesting that the HRS1 gene is involved in the formation of RAD52-independent deletions; (2) the hrs2-1 hpr1δ mutant is sensitive to methyl-methane-sulfonate and the single mutants hpr1δ and hrs2-1 are resistant, which suggests that the HPR1 and HRS2 proteins may have redundant DNA repair functions; (3) the hrs4-1 mutation confers a hyper-mutator phenotype and (4) the phenotype of lack of activation of gene expression observed in hpr1δ strains is only partially suppressed by the hrs2-1 mutation, which suggests that the possible functions of the Hpr1 protein in gene expression and recombination repair can be separated. We discuss the possible relationship between the HPR1 and the HRS genes and their involvement in initiation of the events responsible for deletion formation.  相似文献   

8.
The symbiotic protists of the lower termite have been regarded as a model of early-branched eukaryotes because of their simple cellular systems and morphological features. However, cultivation of these symbiotic protists is very difficult. For this reason, these interesting protists have not been well characterized in terms of their molecular biology. In research on these organisms which have not yet been cultivated, we developed a method for retrieving specific genes from a small number of cells, through micromanipulation without axenic cultivation, and we obtained EF-1 alpha and alpha-tubulin genes from members of the Hypermastigida--the parabasalid protist Trichonympha agilis and the oxymonad protists Pyrsonympha grandis and Dinenympha exilis--from the termite Reticulitermes speratus gut community. Results of phylogenetic analysis of the amino acid sequences of both proteins, EF-1 alpha and alpha-tubulin, indicate that the hypermastigid, parabasalid, and oxymonad protists do not share a close common ancestor. In addition, although the EF-1 alpha phylogeny indicates that these two groups of protists branched at an early stage of eukaryotic evolution, the alpha-tubulin phylogeny indicates that these protists can be assigned to two diversified clades. As shown in a recent investigation of alpha-tubulin phylogeny, eukaryotic organisms can be divided into three classes: an animal--parabasalids clade, a plant--protists clade, and the diplomonads. In this study, we show that parabasalids, including hypermastigids, can be classified as belonging to the animal--parabasalids clade and the early-branching eukaryote oxymonads can be classified as belonging to the plant--protists clade. Our findings suggest that these protists have a cellular microtubule system that has diverged considerably, and it seems that such divergence of the microtubule system occurred in the earliest stage of eukaryotic evolution.  相似文献   

9.
M. Heude  F. Fabre 《Genetics》1993,133(3):489-498
It has long been known that diploid strains of yeast are more resistant to γ-rays than haploid cells, and that this is in part due to heterozygosity at the mating type (MAT) locus. It is shown here that the genetic control exerted by the MAT genes on DNA repair involves the a1 and α2 genes, in a RME1-independent way. In rad18 diploids, affected in the error-prone repair, the a/α effects are of a very large amplitude, after both UV and γ-rays, and also depends on a1 and α2. The coexpression of a and α in rad18 haploids suppresses the sensitivity of a subpopulation corresponding to the G(2) phase cells. Related to this, the coexpression of a and α in RAD(+) haploids depresses UV-induced mutagenesis in G(2) cells. For srs2 null diploids, also affected in the error-prone repair pathway, we show that their G(1) UV sensitivity, likely due to lethal recombination events, is partly suppressed by MAT homozygosity. Taken together, these results led to the proposal that a1-α2 promotes a channeling of some DNA structures from the mutagenic into the recombinational repair process.  相似文献   

10.
A fraction containing IgA (IgA-rich fraction) was prepared from bovine colostrum by anion exchange chromatography using DEAE-Sephadex A-50 and gel filtration on Sephadex G-200. A large amount of IgG1-dimer was found in this fraction, which could not be separated from IgA by repeated gel filtration.

The Fc fragment of bovine colostral IgG (IgG-Fc) was prepared from papain digestion mixtures. IgG-Fc was found to be heterogeneous on DEAE-cellulose column chromatography. Two IgG-Fc fractions were obtained, but no antigenic difference was found between them. Anti-IgG-Fc antibodies raised in rabbits by injection of these Fc preparations reacted only with IgG1 and IgG2. An immunoadsorbent (anti-IgG-Fc-Sepharose) was prepared by coupling these anti-IgG-Fc antibodies to CNBr-activated Sepharose 4B.

IgA was purified from the IgA-rich fraction by affinity chromatography on anti-IgG-Fc-Sepharose adsorbent. IgG1-dimer was effectively removed by this treatment. The purified sample gave only one precipitin arc characteristic of IgA on immunoelectrophoresis with multiple anti-bovine colostral whey antiserum. A small amount of IgA was found to be adsorbed to the affinity column nonspecifically.

When a rabbit was immunized with the purified IgA, besides anti-IgA antibodies, antibodies against the secretory component (SC) were found in the antiserum. This finding leads us to expect that the purified IgA is secretory IgA containing SC.  相似文献   

11.
α-Aminoisobutyric acid is the only tertiary amino acid which is reported to occur in the proteins. Nevertheless, this amino acid has not been yet isolated from the proteins. Recently we succeeded in isolating this amino acid as white prismy crystalline substance from both acid and pepsin hydrolysate of horse hind leg muscle proteins, and this crystal was identified to be α-amino-isobutyric acid by elementary analysis, properties of this derivates, etc.  相似文献   

12.
Two of the three homothallic genes, HM alpha and HMa, showed direct linkage to the mating-type locus at approximately 73 and 98 strans (57 and 65 centimorgans [cM], respectively, whereas, the other, HO, showed no linkage to 25 standard markers distributed over 17 chromosomes including the mating-type locus. To determine whether the HM alpha and HMa loci located on the left or right side of the mating-type locus, equations for three factor analysis of three linked genes were derived. Tetrad data were collected and were compared with expected values by chi 2 statistics. Calculations indicated that the HM alpha gene is probably located on the right arm at 95 strans (65 cM) from the centromere and the HMa locus at approximately 90 strans (64 cM) on the left arm of chromosome III.  相似文献   

13.
《Journal of molecular biology》2019,431(12):2320-2330
Short insertions and deletions (InDels) are a common type of mutation found in nature and a useful source of variation in protein engineering. InDel events have important consequences in protein evolution, often opening new pathways for adaptation. However, much less is known about the effects of InDels compared to point mutations and amino acid substitutions. In particular, deep mutagenesis studies on the distribution of fitness effects of mutations have focused almost exclusively on amino acid substitutions. Here, we present a near-comprehensive analysis of the fitness effects of single amino acid InDels in TEM-1 β-lactamase. While we found InDels to be largely deleterious, partially overlapping deletion-tolerant and insertion-tolerant regions were observed throughout the protein, especially in unstructured regions and at the end of helices. The signal sequence of TEM-1 tolerated InDels more than the mature protein. Most regions of the protein tolerated insertions more than deletions, but a few regions tolerated deletions more than insertions. We examined the relationship between InDel tolerance and a variety of measures to help understand its origin. These measures included evolutionary variation in β-lactamases, secondary structure identity, tolerance to amino acid substitutions, solvent accessibility, and side-chain weighted contact number. We found secondary structure, weighted contact number, and evolutionary variation in class A beta-lactamases to be the somewhat predictive of InDel fitness effects.  相似文献   

14.
The zinc finger protein ZPR1 is present in the cytoplasm of quiescent mammalian cells and translocates to the nucleus upon treatment with mitogens, including epidermal growth factor (EGF). Homologues of ZPR1 were identified in yeast and mammals. These ZPR1 proteins bind to eukaryotic translation elongation factor-1α (eEF-1α). Studies of mammalian cells demonstrated that EGF treatment induces the interaction of ZPR1 with eEF-1α and the redistribution of both proteins to the nucleus. In the yeast Saccharomyces cerevisiae, genetic analysis demonstrated that ZPR1 is an essential gene. Deletion analysis demonstrated that the NH2-terminal region of ZPR1 is required for normal growth and that the COOH-terminal region was essential for viability in S. cerevisiae. The yeast ZPR1 protein redistributes from the cytoplasm to the nucleus in response to nutrient stimulation. Disruption of the binding of ZPR1 to eEF-1α by mutational analysis resulted in an accumulation of cells in the G2/M phase of cell cycle and defective growth. Reconstitution of the ZPR1 interaction with eEF-1α restored normal growth. We conclude that ZPR1 is essential for cell viability and that its interaction with eEF-1α contributes to normal cellular proliferation.  相似文献   

15.
Phylogenetic relationships in the Mesostigmata are assessed using DNA sequence data for a segment of the elongation factor-1alpha gene. This is the first application of this nuclear protein coding gene to problems of higher relationships in Parasitiformes. Initial testing revealed extensive variability in nucleotide and corresponding amino acid sequences, both among and within mesostigmatid infraorders. However, accuracy, as assessed by the ability of these data to recover well-supported taxa, was inconsistent for all analyses using unweighted data. None of these analyses consistently recovered Mesostigmata, although less inclusive taxa, such as Uropodina and Trigynaspida, were often recovered. Accuracy was highest for an analysis using applied weighting on the nucleotide sequence data. The overall results provide support for monophyly of Uropodina, Trigynaspida, and a grouping of Zerconina, Parasitina, and Dermanyssina, and suggest close relationships between Heterozerconina and Sejina.  相似文献   

16.
17.
Expressing antibodies as fusions to the non-self-cleaving Mxe GyrA intein allows for site-specific chemical functionalization via expressed protein ligation. It is highly desirable to maximize the yield of functionalizable protein; and previously an evolved intein, 202-08, was identified that could increase protein fusion production in yeast. Given that the −1 amino acid residue upstream of inteins can affect cleavage efficiency, we examined the effects of amino acid variability at this position on 202-08 intein cleavage efficiency and secretion yield. Varying the −1 residue resulted in a wide range of cleavage behaviors with some amino acids yielding substantial autocleaved product that could not be functionalized. Autocleavage was noticeably higher with the 202-08 intein compared with the wild-type Mxe GyrA intein and resulted directly from the catalytic activity of the intein. Refeeding of production cultures with nitrogen base and casamino acids reduced, but did not eliminate autocleavage, while increasing protein-intein production up to seven-fold. Importantly, two amino acids, Gly and Ala, at the −1 position resulted in good cleavage efficiency with no undesirable autocleavage, and can be used in concert with refeeding strategies to increase total functionalizable protein yield for multiple protein fusion partners. Taken together, we describe an optimized yeast expression platform for protein-intein fusions. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2736, 2019  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号