首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic inactivation of the synthesis of phosphatidylcholine, the most abundant membrane lipid in eukaryotic cells, induces apoptosis. Administration of farnesol, a catabolite within the isoprenoid/cholesterol pathway, also induces apoptosis. The mechanism by which farnesol induces apoptosis is currently believed to be by direct competitive inhibition with diacylglycerol for cholinephosphotransferase, the final step in the phosphatidylcholine biosynthetic pathway. Our recent isolation of the first mammalian cholinephosphotransferase cDNA has enabled us to more precisely assess how farnesol affects phosphatidylcholine synthesis and the induction of apoptosis. Induced over-expression of cholinephosphotransferase in Chinese hamster ovary cells prevented the block in phosphatidylcholine biosynthesis associated with exposure to farnesol. However, induced over-expression of cholinephosphotransferase was not sufficient for the prevention of farnesol-induced apoptosis. In addition, exogenous administration of diacylglycerol prevented farnesol-induced apoptosis but did not relieve the farnesol-induced block in phosphatidylcholine synthesis. We also developed an in vitro lipid mixed micelle cholinephosphotransferase enzyme assay, as opposed to the delivery of the diacylglycerol substrate in a detergent emulsion, and demonstrated that there was no direct inhibition of cholinephosphotransferase by farnesol or its phosphorylated metabolites. The execution of apoptosis by farnesol appears to be a separate and distinct event from farnesol-induced inhibition of phosphatidylcholine biosynthesis and instead likely occurs through a diacylglycerol-mediated process that is downstream of phosphatidylcholine synthesis.  相似文献   

2.
Treatment of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells with cysteine (Cys) triggers a signal pathway culminating in a large loss of mitochondrial cytochrome (cyt) pathway capacity. This down-regulation of the cyt path likely requires events outside the mitochondrion and is effectively blocked by cantharidin or endothall, indicating that protein dephosphorylation is one critical process involved. Generation of reactive oxygen species, cytosolic protein synthesis, and Ca(2+) flux from organelles also appear to be involved. Accompanying the loss of cyt path is a large induction of alternative oxidase (AOX) protein and capacity. Induction of AOX allows the cells to maintain high rates of respiration, indicating that the lesion triggered by Cys is in the cyt path downstream of ubiquinone. Consistent with this, transgenic (AS8) cells unable to induce AOX (due to the presence of an antisense transgene) lose all respiratory capacity upon Cys treatment. This initiates in AS8 a programmed cell death pathway, as evidenced by the accumulation of oligonucleosomal fragments of DNA as the culture dies. Alternatively, wild-type cells remain viable and eventually recover their cyt path. Induction of AOX in response to a chemical inhibition of the cyt path (by antimycin A) is also dependent upon protein dephosphorylation and the generation of reactive oxygen species. Common events required for both down-regulation of the cyt path and induction of AOX may represent a mechanism to coordinate the biogenesis of these two electron transport paths. Such coordinate regulation may be necessary, not only to satisfy metabolic demands, but also to modulate the initiation of a programmed cell death pathway responsive to mitochondrial respiratory status.  相似文献   

3.
The dimorphic fungus Candida albicans secretes farnesol, which acts as a quorum-sensing molecule and prevents the yeast to mycelium conversion. In this study we examined the effect of farnesol in the filamentous fungus Aspergillus nidulans. We show that externally added farnesol has no effect on hyphal morphogenesis; instead, it triggers morphological features characteristic of apoptosis. Additional experiments suggest that mitochondria and reactive oxygen species (ROS) participate in farnesol-induced apoptosis. Moreover, the effects of farnesol appear to be mediated by the FadA heterotrimeric G protein complex. Because A. nidulans does not secrete detectable amounts of farnesol, we propose that it responds to farnesol produced by other fungi. In agreement with this notion, growth and development were impaired in a farnesol-dependent manner when A. nidulans was co-cultivated with C. albicans. Taken together, our data suggest that farnesol, in addition to its quorum-sensing function that regulates morphogenesis, is also employed by C. albicans to reduce competition from other microbes.  相似文献   

4.
5.
Regulated ubiquitination and degradation of signaling proteins have emerged as key mechanisms for modulating the strength and duration of signaling pathways. The reversible nature of the ubiquitination process as well as the large number and diversity of the deubiquitinating enzymes raise the possibility that signaling pathways might be modulated by specific deubiquitinating enzyme(s). Here we provide evidence that in the yeast Saccharomyces cerevisiae, the Pkc1-mediated signaling pathway that controls the cell wall integrity is negatively regulated by the deubiquitinating enzyme Ubp3. Disruption of the UBP3 gene leads to an enhanced activation of the cell wall integrity pathway MAPK Slt2 when cells are challenged with a variety of pathway activation agents such as pheromone and Congo red. The ubp3 deletion mutants accumulate high levels of Pkc1, suggesting potential regulation of Pkc1 by Ubp3. Consistent with this, Pkc1 and Ubp3 interact in vivo, and the stability of Pkc1 is markedly increased in the ubp3 deletion mutants. Moreover, disruption of the PKC1 gene, but not the genes that encode components downstream of Pkc1, completely suppresses other phenotypes displayed by the ubp3 deletion mutants such as hyperactivation of the pheromone-responsive MAPK Fus3 (Wang, Y., and Dohlman, H. G. (2002) J. Biol. Chem. 277, 15766-15772). These findings demonstrate that Ubp3 can regulate Pkc1 by facilitating its destruction and provide the initial evidence that Pkc1 plays a positive role in modulating the parallel pheromone-signaling pathway.  相似文献   

6.
7.
The hepatocyte growth factor and its receptor c-Met direct a pleiotropic signal transduction pathway that controls cell survival. We previously demonstrated that mice lacking c-Met (Met-KO) in hepatocytes were hypersensitive to Fas-induced liver injury. In this study, we used primary hepatocytes isolated from Met-KO and control (Cre-Ctrl) mice to address more directly the protective effects of c-Met signaling. Loss of c-Met function increased sensitivity to Fas-mediated apoptosis. Hepatocyte growth factor suppressed apoptosis in Cre-Ctrl but not Met-KO hepatocytes concurrently with up-regulation of NF-kappaB and major antiapoptotic proteins Bcl-2 and Bcl-xL. Intriguingly, Met-KO hepatocytes exhibited intrinsic activation of NF-kappaBas well as Bcl-2 and Bcl-xL. Furthermore, unchallenged Met-KO cells displayed oxidative stress as evidenced by overproduction of reactive oxygen species, which was associated with greater NADPH and Rac1 activities, was blocked by the known NADPH oxidase inhibitors, and was paralleled by increased lipid peroxidation and reduced glutathione (GSH) content. N-Acetylcysteine, an antioxidant and GSH precursor, significantly reduced Jo2-induced cell death. Conversely, the GSH-depleting agent buthionine sulfoximine completely abolished the protective effects of N-acetylcysteine in Met-KO hepatocytes. In conclusion, genetic inactivation of c-Met in mouse hepatocytes caused defects in redox regulation, which may account for the increased sensitivity to Fas-induced apoptosis and adaptive up-regulation of NF-kappaB survival signaling. These data provide evidence that intact c-Met signaling is a critical factor in the protection against excessive generation of endogenous reactive oxygen species.  相似文献   

8.
In the vertebrates, programmed cell death or apoptosis frequently involves the relocalization of mitochondrial cytochrome c to the cytoplasm. This prominent role in the regulation of apoptosis is in addition to the primary function of cytochrome c in the mitochondrial electron transport chain. These seemingly divergent roles become plausible when considering the symbiotic origin of the mitochondrion. Symbiosis involves conflicts between levels of selection, in this case between the primitive host cell and the protomitochondria. In an aerobic environment, selection on the protomitochondria may have favored routine manipulations of the host cell's phenotype using products and by-products of oxidative phosphorylation, in particular reactive oxygen species (ROS). Blocking the mitochondrial electron transport chain by removing cytochrome c enhances the production of ROS; thus cytochrome c release by protomitochondria may have altered the host cell's phenotype via enhanced ROS production. Subsequently, this signaling pathway may have been refined by selection so that cytochrome c itself became the trigger for changes in the host's phenotype. A mechanism of apoptosis in metazoans may thus be a vestige of evolutionary conflicts within the eukaryotic cell.  相似文献   

9.
The mitochondrial electron transport chain is the major source for the production of oxygen radicals. Mitochondria-generated reactive oxygen species (mROS) have been implicated in decreasing the life span and contributing to age-related diseases (known as the free radical theory of aging). Recently, the serine/threonine kinase protein kinase D1 (PKD1) was identified as a mitochondrial sensor for oxidative stress. mROS-activated PKD regulates a radical-sensing signaling pathway, which relays mROS production to the induction of nuclear genes that mediate cellular detoxification and survival. This PKD regulated signaling pathway is the first known mitochondria located and mitochondrially regulated antioxidant system that protects these organelles and cells from oxidative stress-mediated damage or cell death. The identification of this and further intracellular protective signaling pathways provides an opportunity to manipulate the effects of mROS, and might provide the key to targeting aging effects and age-related diseases that have been linked to mitochondrial dysfunctions.  相似文献   

10.
LPS has been implicated in the pathogenesis of endothelial cell death associated with Gram-negative bacterial sepsis. The binding of LPS to the TLR-4 on the surface of endothelial cells initiates the formation of a death-inducing signaling complex at the cell surface. The subsequent signaling pathways that result in apoptotic cell death remain unclear and may differ among endothelial cells in different organs. We sought to determine whether LPS and cycloheximide-induced cell death in human lung microvascular endothelial cells (HmVECs) was dependent upon activation of the intrinsic apoptotic pathway and the generation of reactive oxygen species. We found that cells overexpressing the anti-apoptotic protein Bcl-X(L) were resistant to LPS and cycloheximide-induced death and that the proapoptotic Bcl-2 protein Bid was cleaved following treatment with LPS. The importance of Bid was confirmed by protection of Bid-deficient (bid(-/-)) mice from LPS-induced lung injury. Neither HmVECs treated with the combined superoxide dismutase/catalase mimetic EUK-134 nor HmVECs depleted of mitochondrial DNA (rho(0) cells) were protected against LPS and cycloheximide-induced death. We conclude that LPS and cycloheximide-induced death in HmVECs requires the intrinsic cell death pathway, but not the generation of reactive oxygen species.  相似文献   

11.
BACKGROUND: Reactive oxygen species (ROS) are mainly produced in mitochondria and are important contributors to many forms of cell death. ROS also function as second messengers within the cell and may constitute a signaling pathway from mitochondria to the cytoplasm and nucleus. The aim of the present study was to develop a protocol to detect changes in intra- and extramitochondrial releases of ROS, which could be used to analyze the role of mitochondria in cell signaling and cell death. METHODS: Fluorescence-based assays were used to measure (a) total production of ROS, (b) intramitochondrial ROS, (c) extramitochondrial hydrogen peroxide, and (d) superoxide outside inverted (inside-out) submitochondrial particles. ROS generation in the samples was increased or decreased by the addition of different substrates, enzymes, and inhibitors of the electron transport chain. RESULTS: The individual assays used were sensitive to increased (e.g., after addition of antimycin A; increased signal) and decreased (ROS scavenging; decreased signal) levels of ROS. In combination, the assays provided information about mitochondrial ROS generation and release dynamics from small samples of isolated mitochondria. CONCLUSIONS: The combination of fluorescent techniques described is a useful tool to study the role of ROS in cell death and in cellular redox signaling.  相似文献   

12.
Plant defense against pathogens often includes rapid programmed cell death known as the hypersensitive response (HR). Recent genetic studies have demonstrated the involvement of a specific mitogen-activated protein kinase (MAPK) cascade consisting of three tobacco MAPKs, SIPK, Ntf4 and WIPK, and their common upstream MAPK kinase (MAPKK or MEK), NtMEK2. Potential upstream MAPKK kinases (MAPKKKs or MEKKs) in this cascade include the orthologs of Arabidopsis MEKK1 and tomato MAPKKKalpha. Activation of the SIPK/Ntf4/WIPK pathway induces cell death with phenotypes identical to pathogen-induced HR at macroscopic, microscopic and physiological levels, including loss of membrane potential, electrolyte leakage and rapid dehydration. Loss of membrane potential in NtMEK2(DD) plants is associated with the generation of reactive oxygen species (ROS), which is preceded by disruption of metabolic activities in chloroplasts and mitochondria. We observed rapid shutdown of carbon fixation in chloroplasts after SIPK/Ntf4/WIPK activation, which can lead to the generation of ROS in chloroplasts under illumination. Consistent with a role of chloroplast-generated ROS in MAPK-mediated cell death, plants kept in the dark do not accumulate H(2)O(2) in chloroplasts after MAPK activation, and cell death is significantly delayed. Similar light dependency was observed in HR cell death induced by tobacco mosaic virus, which is known to activate the same MAPK pathway in an N-gene-dependent manner. These results suggest that activation of the SIPK/Ntf4/WIPK cascade by pathogens actively promotes the generation of ROS in chloroplasts, which plays an important role in the signaling for and/or execution of HR cell death in plants.  相似文献   

13.
In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.  相似文献   

14.
Sphingosylphosphorylcholine (SPC) produces reactive oxygen species (ROS) in MS1 pancreatic islet endothelial cells. In the present study, we explored the physiological significance of the SPC-induced ROS generation in endothelial cells. SPC induced cell death of MS1 cells at higher than 10 microM concentration through a caspase-3-dependent pathway. SPC treatment induced sustained activation of an extracellular signal-regulated kinase (ERK), in contrast to transient activation of ERK in response to platelet-derived growth factor (PDGF)-BB, which stimulated proliferation of MS1 cells. Both the SPC-induced cell death and ERK activation were abolished by pretreatment of the cells with the MEK inhibitor U0126 or by overexpression of a dominant negative mutant of MEK1 (DN-MEK1). Pretreatment of the cells with N-acetylcysteine, an antioxidant, completely prevented the SPC-induced ROS generation, apoptosis, and ERK activation, whereas the ROS generation was not abrogated by treatment with U0126. Consistent with these results, SPC induced cell death of human umbilical vein endothelial cells (HUVECs) through ROS-mediated activation of ERK. These results suggest that the SPC-induced generation of ROS plays a crucial role in the cell death of endothelial cells through ERK-dependent pathway.  相似文献   

15.
大黄素提高HeLa细胞对三氧化二砷促凋亡敏感性的研究   总被引:2,自引:0,他引:2  
活性氧(reactive oxygen species,ROS)在三氧化二砷(arsenic trioxide,As2O3)诱导肿瘤细胞凋亡中扮演重要角色。本研究用一种天然蒽醌类物质——大黄素(emodin)作为提高HeLa细胞ROS水平的手段,考察其对As2O3促凋亡敏感性的影响,并探究可能涉及的信号传导机制。结果显示大黄素10μmol/L提高ROS并增加了HeLa细胞在As2O32μmol/L作用下的凋亡率,对正常成纤维细胞却无影响。该联合作用可以促进HeLa细胞线粒体跨膜电位降低;抑制转录因子NF-κB激活。本研究提示:大黄素通过提高ROS介导凋亡信号传导的增强和生存信号传导的抑制,增加HeLa细胞对As2O3促凋亡的敏感性。  相似文献   

16.
The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells.  相似文献   

17.
The relationships among reactive oxygen species (ROS) generation, lipid compositional changes, antioxidant power, and mitochondrial membrane potential were determined in a human lens epithelial cell line, HLE-B3. Cells grown in a hyperoxic atmosphere grew linearly for about 3 days, and then progressively died. Total antioxidant power and ROS generation increased by 50 and 43%, respectively, in cells grown in a hyperoxic atmosphere compared to those cultured in a normoxic atmosphere. By specifically uncoupling the mitochondrial proton gradient, we determined that the mitochondria are most likely the major source of ROS generation. ROS generation correlated inversely with mitochondrial membrane potential and the amount of cardiolipin, factors likely to contribute to loss of cell viability. Our results support the idea that hyperoxic damage to HLE-B3 cells derives from enhanced generation of ROS from the mitochondrial electron transport chain resulting in the oxidation of cardiolipin. With extended hyperoxic insult, the oxidants overwhelm the antioxidant defense system and eventually cell death ensues.  相似文献   

18.
Exposure of animals to hyperoxia results in lung injury that is characterized by apoptosis and necrosis of the alveolar epithelium and endothelium. The mechanism by which hyperoxia results in cell death, however, remains unclear. We sought to test the hypothesis that exposure to hyperoxia causes mitochondria-dependent apoptosis that requires the generation of reactive oxygen species from mitochondrial electron transport. Rat1a cells exposed to hyperoxia underwent apoptosis characterized by the release of cytochrome c, activation of caspase-9, and nuclear fragmentation that was prevented by the overexpression of Bcl-X(L.) Murine embryonic fibroblasts from bax(-/-) bak(-/-) mice were resistant to hyperoxia-induced cell death. The administration of the antioxidants manganese (III) tetrakis (4-benzoic acid) porphyrin, ebselen, and N-acetylcysteine failed to prevent cell death following exposure to hyperoxia. Human fibrosarcoma cells (HT1080) lacking mitochondrial DNA (rho(0) cells) that failed to generate reactive oxygen species during exposure to hyperoxia were not protected against cell death following exposure to hyperoxia. We conclude that exposure to hyperoxia results in apoptosis that requires Bax or Bak and can be prevented by the overexpression of Bcl-X(L). The mitochondrial generation of reactive oxygen species is not required for cell death following exposure to hyperoxia.  相似文献   

19.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号