首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on theE. coli chromosome. ThenarGHJI operon, encoding nitrate reductaseA, is located in thechlC locus at 27 minutes, along with several functionally related genes:narK, encoding a nitrate/nitrite antiporter, and thenarXL operon, encoding a nitrate-activated, two component regulatory system. ThenarZYWV operon, encoding nitrate reductase Z, is located in thechlZ locus located at 32.5 minutes, a region which includes anarK homologue,narU, but no apparent homologue to thenarXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both thenarGHJI operon and thenarK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while thenarZYWV operon and thenarU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase inE. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.Abbreviations NR nitrate reductase On leave from Department of Biochemistry and Molecular Biology, The University of Texas Medical school at Houston, Houston, Texas, 77225, USA  相似文献   

2.
3.
Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O2), while no visible colonies were formed in the absence of O2. However, in the presence of nitrate (), the organism exhibited limited growth anaerobically with production of nitrite (), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using l-lysine- and l-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.  相似文献   

4.
The halophilic bacterium Halomonas maura is capable of anaerobic respiration on nitrates. By insertional mutagenesis with the minitransposon Tn-5 we obtained the mutant Tc62, which was incapable of anaerobic respiration on nitrates. An analysis of the regions adjacent to the transposon allowed us to characterize the membrane-bound anaerobic-respiratory nitrate reductase narGHJI gene cluster in H. maura. We identified consensus sequences for fumarate and nitrate reductase regulator (FNR)-like protein-binding sites in the promoter regions of the nar genes and consensus sequences corresponding to the NarL binding sites upstream of the nar genes. RT-PCR analysis showed that the narGHJI operon was expressed in response to anaerobic conditions when nitrate was available as electron acceptor. This membrane-bound nitrate reductase is the only enzyme responsible for anaerobic respiration on nitrate in H. maura. In this article we discuss the possible relationship between this enzyme and a dissimilatory nitrate-reduction-to-ammonia process (DNRA) in H. maura and its role in the colonization of the rhizosphere.  相似文献   

5.
The two membrane-bound respiratory nitrate reductases of Escherichia coli are encoded by distinct operons at two different loci, chlC and chlZ, on the chromosome. The chlZ locus includes a narK homologue, narU, encoding a nitrite extrusion protein, and narZYWV encoding nitrate reductase Z. No apparent homologue to the narXL operon has been found. Homology between narU and narK on the one hand and narZYWV and narGHJI on the other hand is limited to the coding regions.  相似文献   

6.
Citrobacter freundii, Paracoccus denitrificans and Pseudomonas stutzeri were grown either singly or in mixed culture in anaerobic nitrate or nitrite limited chemostats with formate and/or succinate as electron donors and carbon sources. C. freundii reduced nitrate or nitrite stoichiometrically to ammonia. Maximum molar growth yields for nitrate (nitrite) were 15.3 (9.9) g/mol for C. freundii on formate with succinate as carbon source, 15.3 (9.5) g/mol for Ps. stutzeri on succinate and 32.3 (20.4) g/mol for Pa. denitrificans on succinate. The almost identical growth yields indicate that the ATP output of the anaerobic processes in the nitrate (nitrite) ammonifying organism and Ps. stutzeri are nearly the same. In mixed cultures with either Ps. stutzeri or Pa. denitrificans, C. freundii was the best competitor for nitrate. These results show that in anaerobic environments C. freundii may compete successfully with denitrifying organisms.  相似文献   

7.
8.
9.
Corynebacterium glutamicum R efficiently produces valuable chemicals from glucose under oxygen-deprived conditions. In an effort to reduce acetate as a byproduct, acetate productivity of several mutant-disrupted genes encoding possible key enzymes for acetate formation was determined. Disruption of the aceE gene that encodes the E1 enzyme of the pyruvate dehydrogenase complex resulted in almost complete elimination of acetate formation under oxygen-deprived conditions, implying that acetate synthesis under these conditions was essentially via acetyl-coenzyme A (CoA). Simultaneous disruption of pta, encoding phosphotransacetylase, and ack, encoding acetate kinase, resulted in no measurable change in acetate productivity. A mutant strain with disruptions in pta, ack and as-yet uncharacterized gene (cgR2472) exhibited 65% reduced acetate productivity compared to the parental strain, although a single disruption of cgR2472 exhibited no effect on acetate productivity. The gene cgR2472 was shown to encode a CoA-transferase (CTF) that catalyzes the formation of acetate from acetyl-CoA. These results indicate that PTA-ACK as well as CTF is involved in acetate production in C. glutamicum. This study provided basic information to reduce acetate production under oxygen-deprived conditions. An erratum to this article can be found at  相似文献   

10.
Although many bacteria contain only a single groE operon encoding the essential chaperones GroES and GroEL, examples of bacteria containing more than one groE operon are common. The root-nodulating bacterium Rhizobium leguminosarum contains at least three operons encoding homologues to Escherichia coli GroEL, referred to as Cpn60.1, Cpn60.2 and Cpn60.3, respectively. We report here a detailed analysis of the requirement for and relative levels of these three proteins. Cpn60.1 is present at higher levels than Cpn60.2, and Cpn60.3 protein could not be detected under any conditions although the cpn60.3 gene is transcribed under anaerobic conditions. Insertion mutations could not be constructed in cpn60.1 unless a complementing copy was present, showing that this gene is essential for growth under the conditions used here. Both cpn60.2 and cpn60.3 could be inactivated with no loss of viability, and a double cpn60.2 cpn60.3 mutant was also constructed which was fully viable. Thus only Cpn60.1 is required for growth of this organism.Dedicated to the memory of Professor V. Javier Benedí, 1957–2002  相似文献   

11.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   

12.
13.
Two moderately halophilic low G + C Gram-positive bacteria were isolated from a sample of salted skate (Class Chondrychthyes, Genus Raja). Phylogenetic analysis of the 16S rRNA gene sequence of strains RH1T and RH4 showed that these organisms represented a novel species of the genus Salinicoccus. The new isolates formed pink–red colonies and flocculated in liquid media, with optimum growth in media containing 4% NaCl and pH of about 8.0. These organisms are aerobic but reduce nitrate to nitrite under anaerobic conditions. Acid is produced from several carbohydrates. Oxidase and catalase were detected. Menaquinone 6 was the major respiratory quinone. The major fatty acids of strains RH1T and RH4 were 15:0 anteiso and 15:0 iso. The G + C contents of DNA were 46.2 and 46.0 mol%, respectively. The peptidoglycan was of A3alpha L-Lys-Gly5–6 type. On the basis of the phylogenetic analyses, physiological and biochemical characteristics, we suggest that strain RH1T (=LMG 22840 = CIP 108576) represents a new species of the genus Salinicoccus, for which we propose the name Salinicoccus salsiraiae.  相似文献   

14.
Autohydrogenotrophic batch growth of Ralstonia eutropha H16 was studied in a stirred-tank reactor with nitrate and nitrite as terminal electron acceptors and the sole limiting substrates. Assuming product inhibition by nitrite, saturation kinetics with the two limiting substrates and a simple switching function, which allows growth on nitrite only at low nitrate concentrations, resulted in a kinetic growth model with nine model parameters. The data of two batch experiments were used to identify the kinetic model. The kinetic model was validated with two additional batch experiments. The model predictions are in very good agreement with the experimental data. The maximum nitrite concentration was estimated to be 30.7 mM (total inhibition of growth). After complete reduction of nitrate, the growth rate decreases almost to zero before it increases again because of the following nitrite respiration. The maximum autohydrogenotrophic growth rate of Ralstonia eutropha with nitrate as a final electron acceptor (0.509 d−1) was found to be reduced by 90–95% compared to the so far reported autohydrogenotrophic growth rates with oxygen.  相似文献   

15.
The class II fructose-1,6-bisphosphatase gene of Corynebacterium glutamicum, fbp, was cloned and expressed with a N-terminal His-tag in Escherichia coli. Purified, His-tagged fructose-1,6-bisphosphatase from C. glutamicum was shown to be tetrameric, with a molecular mass of about 140 kDa for the homotetramer. The enzyme displayed Michaelis-Menten kinetics for the substrate fructose 1,6-bisphosphate with a Km value of about 14 µM and a Vmax of about 5.4 µmol min–1 mg–1 and kcat of about 3.2 s–1. Fructose-1,6-bisphosphatase activity was dependent on the divalent cations Mg2+ or Mn2+ and was inhibited by the monovalent cation Li+ with an inhibition constant of 140 µM. Fructose 6-phosphate, glycerol 3-phosphate, ribulose 1,5-bisphosphate and myo-inositol-monophosphate were not significant substrates of fructose-1,6-bisphosphatase from C. glutamicum. The enzymatic activity was inhibited by AMP and phosphoenolpyruvate and to a lesser extent by phosphate, fructose 6-phosphate, fructose 2,6-bisphosphate, and UDP. Fructose-1,6-bisphosphatase activities and protein levels varied little with respect to the carbon source. Deletion of the chromosomal fbp gene led to the absence of any detectable fructose-1,6-bisphosphatase activity in crude extracts of C. glutamicum WTfbp and to an inability of this strain to grow on the carbon sources acetate, citrate, glutamate, and lactate. Thus, fbp is essential for growth on gluconeogenic carbon sources and likely codes for the only fructose-1,6-bisphosphatase in C. glutamicum.  相似文献   

16.
A critical factor in the biotechnological production of l-lysine with Corynebacterium glutamicum is the sufficient supply of NADPH. The membrane-integral nicotinamide nucleotide transhydrogenase PntAB of Escherichia coli can use the electrochemical proton gradient across the cytoplasmic membrane to drive the reduction of NADP+ via the oxidation of NADH. As C. glutamicum does not possess such an enzyme, we expressed the E. coli pntAB genes in the genetically defined C. glutamicum lysine-producing strain DM1730, resulting in membrane-associated transhydrogenase activity of 0.7 U/mg protein. When cultivated in minimal medium with 10% (w/v) carbon source, the presence of transhydrogenase slightly reduced glucose consumption, whereas the consumption of fructose, glucose plus fructose, and, in particular, sucrose was stimulated. Biomass was increased by pntAB expression between 10 and 30% on all carbon sources tested. Most importantly, the lysine concentration was increased in the presence of transhydrogenase by ∼10% on glucose, ∼70% on fructose, ∼50% on glucose plus fructose, and even by ∼300% on sucrose. Thus, the presence of a proton-coupled transhydrogenase was shown to be an efficient way to improve lysine production by C. glutamicum. In contrast, pntAB expression had a negative effect on growth and glutamate production of C. glutamicum wild type.  相似文献   

17.
A Tn917 mutant ofStaphylococcus carnosus TM300, nrIII, was isolated and characterized. Mutant nrIII did not take up nitrate or accumulate nitrite when grown in B-medium supplemented with up to 10 mM nitrate under anoxic conditions; however, it displayed wild-type levels of benzyl viologen-linked nitrate reductase activity. Cultivated in B-medium with nitrate under oxic conditions, mutant nrIII accumulated fivefold less nitrite than the wild-type. The mutation inS. carnosus nrIII could be complemented with a 2-kb chromosomalEcoRI-HpaI fragment from the wild-type. The gene affected by transposon insertion in mutant nrIII was cloned and sequenced. Analysis of the deduced amino acid sequence revealed that this gene, designatednarT, encodes a highly hydrophobic 42-kDa transmembrane protein of 388 amino acids and shows similarities to transport proteins that play a role in nitrate import or nitrite export. The inability of nrIII to take up nitrate under anoxic conditions and its ability to take up and accumulate nitrite in the presence of benzyl viologen, a nitrate ionophore, under the same conditions suggest that NarT represents a transport protein required for nitrate uptake under anoxic conditions inS. carnosus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号