首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:3,自引:0,他引:3  
Abstract.— Inclusive fitness benefits have been suggested to be a major selective force behind the evolution of cooperative breeding. We investigated the fitness benefits selecting for cooperative breeding in the Seychelles warbler, Acrocephalus sechellensis . A microsatellite-based genotyping method was used to determine the relatedness of subordinates to group offspring in an isolated population of Seychelles warblers. The indirect and direct breeding benefits accruing to individual subordinates were then calculated for every successful breeding event over a three-year period. We show that female subordinates frequently gained parentage and that this, combined with high levels of extra group paternity, resulted in low levels of relatedness between subordinates and non descendent offspring within a territory. Direct breeding benefits were found to be significantly higher than indirect kin benefits for both female and male subordinates. As predicted, female subordinates gained significantly more direct breeding opportunities and therefore higher inclusive fitness benefits by being a subordinate within a group than did males. This may explain why most subordinates in the Seychelles warbler are female.  相似文献   

2.
Cooperative alliances among kin may not only lead to indirect fitness benefits for group-living species, but can also provide direct benefits through access to mates or higher social rank. However, the immigrant sex in most species loses any potential benefits of living with kin unless immigrants disperse together or recruit relatives into the group in subsequent years. To look for evidence of small subgroups of related immigrants within social groups (kin substructure), we used microsatellites to assess relatedness between immigrant females of the cooperatively breeding superb starling, Lamprotornis superbus. We determined how timing of immigration led to kin subgroup formation and if being part of one influenced female fitness. Although mean relatedness in groups was higher for males than females, 26% of immigrant females were part of a kin subgroup with a sister. These immigrant sibships formed through kin recruitment across years more often than through coalitions immigrating together in the same year. Furthermore, females were more likely to breed when part of a kin subgroup than when alone, suggesting that female siblings form alliances that may positively influence their fitness. Ultimately, kin substructure should be considered when determining the role of relatedness in the evolution of animal societies.  相似文献   

3.
In lekking species, males cluster on specific areas for display (the leks) and females generally prefer to copulate with males on large aggregations. The maintenance of leks in which only a few males reproduce might be explained if subordinate males gain indirect fitness benefits. By joining a lek on which relatives are displaying, subordinates might attract more females to the lek thereby increasing the mating opportunities of their kin. In black grouse, a genetic structure among leks has previously been found suggesting that relatives could display together. Using 11 microsatellite loci, we extended this result by testing for the presence of kin structures in nine black grouse leks (101 males). The genetic differentiation among flocks was higher in males than in females, suggesting female-biased dispersal and male philopatry. Because of this genetic structure, males were more related within than among leks. However, the mean relatedness within each lek hardly differed from zero. The lekking males were not more related than random assortments of males from the winter flocks and there were no kin clusters within leks. Thus, black grouse males do not choose to display with and close to relatives. Male philopatry alone was not sufficient to induce elevated levels of relatedness on the leks either because of male partial dispersal or a rapid turnover of the successful males. The indirect fitness benefits associated with males' settlement decision are probably limited compared to the direct benefits of joining large aggregations such as increased current and future mating opportunities.  相似文献   

4.
Female mate choice and male–male competition are the typical mechanisms of sexual selection. However, these two mechanisms do not always favour the same males. Furthermore, it has recently become clear that female choice can sometimes benefit males that reduce female fitness. So whether male–male competition and female choice favour the same or different males, and whether or not females benefit from mate choice, remain open questions. In the horned beetle, Gnatocerus cornutus, males have enlarged mandibles used to fight rivals, and larger mandibles provide a mating advantage when there is direct male–male competition for mates. However, it is not clear whether females prefer these highly competitive males. Here, we show that female choice targets male courtship rather than mandible size, and these two characters are not phenotypically or genetically correlated. Mating with attractive, highly courting males provided indirect benefits to females but only via the heritability of male attractiveness. However, mating with attractive males avoids the indirect costs to daughters that are generated by mating with competitive males. Our results suggest that male–male competition may constrain female mate choice, possibly reducing female fitness and generating sexual conflict over mating.  相似文献   

5.
Chimpanzees live in large groups featuring remarkable levels of gregariousness and cooperation among the males. Because males stay in their natal communities their entire lives and are hence expected to be living with male relatives, cooperation is therefore assumed to occur within one large 'family' group. However, we found that the average relatedness among males within several chimpanzee groups as determined by microsatellite analysis is in fact rather low, and only rarely significantly higher than average relatedness of females in the groups or of males compared across groups. To explain these findings, mathematical predictions for average relatedness according to group size, reproductive skew and sex bias in dispersal were derived. The results show that high average relatedness among the philopatric sex is only expected in very small groups, which is confirmed by a comparison with published data. Our study therefore suggests that interactions among larger number of individuals may not be primarily driven by kin relationships.  相似文献   

6.
7.
  总被引:1,自引:0,他引:1  
In lek-mating systems, males aggregate at display arenas andfemales visit solely for the purpose of mating. This breedingsystem is characterized by high variance in male mating successwith one male often receiving most copulations. High reproductiveskew among males has led to question why males join leks whentheir chances of reproductive success are so low. Kin selectionhas been invoked as a mechanism to explain the evolution oflekking behavior, whereby nonreproducing but genetically relatedmales gain indirect inclusive-fitness benefits. Evidence forkin selection among lek-mating birds is, however, mixed. Here,we show that kin selection is unlikely to be an important explanationfor evolution of lekking behavior in manakins (Aves: Pipridae).We found that for 4 species chosen from several major cladeswithin Pipridae, males within leks were not significantly morerelated than expected from random assortment of males in thepopulation. This means that nonreproducing males do not gainindirect inclusive-fitness benefits by joining leks. This resultsuggests alternative mechanisms must be invoked to explain theevolution of lek-mating systems in manakins.  相似文献   

8.
Briga M  Pen I  Wright J 《Biology letters》2012,8(4):533-536
With an increasing amount of data becoming available, comparative analyses have called attention to the associations between cooperative breeding, monogamy and relatedness. We focus here upon the association between allomaternal care and relatedness among females within a social unit. Previous studies found a positive association, but such results date back to before molecular tools were in common use, they considered only a few mammalian orders, neglected phylogenetic clustering and/or did not correct for group sizes. Here, we use molecular data on relatedness from 44 species of mammals to investigate the phylogenetic clustering of, and the association between, allomaternal care and relatedness among females within a social unit. We find (i) a strong phylogenetic signal for allomaternal care and a moderate one for relatedness and group size, and (ii) a positive association between relatedness and allomaternal care, even when correcting for the smaller than average group sizes in species with allomaternal care. We also find that, in species without allomaternal care, adult females often live with unrelated females even when groups are small. We discuss these results in the light of recent evidence for the role of kin selection and the monogamy hypothesis in cooperative breeding.  相似文献   

9.
In cooperatively breeding species, helpers typically providefood to offspring, and distribute food throughout the broodor litter. However, in the communal breeding banded mongoose(Mungos mungo), some group members escort individual pups duringtheir period of dependence, and escorts consistently associatewith the same pup, although not all pups have an escort. Theaim of the present study was to determine whether group membersactively care for pups, pups benefit from association, and escortsor pups maintain association. Adult banded mongooses provision,protect, carry, groom, and play with pups. Although escortsfed pups more than did nonescorts, escorted pups were neitherlarger nor in better condition than were nonescorted pups atthe end of the association period. Nevertheless, escorted pupswere more likely to survive the association period than werenonescorted pups, providing evidence that carers confer beneficialeffects on their recipients. However, the recipients are unlikelyto be the genetic offspring of the escort because it is thepup that maintains the pup-escort association, and escorts,rather than showing a preference for provisioning their pairedpup, follow a "feed the closest pup" rule. Although carers gainindirect fitness benefits through increasing survival of relatedpups, the lack of kin discrimination means carers are unableto maximize their fitness by preferentially escorting theirown offspring or the offspring of closer relatives.  相似文献   

10.
11.
Hamilton''s theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton''s perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton''s rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton''s rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton''s rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution.  相似文献   

12.
Ornamental secondary sexual traits are hypothesized to evolve in response to directional mating preferences for more ornamented mates. Such mating preferences may themselves evolve partly because ornamentation indicates an individual's additive genetic quality (good genes). While mate choice can also confer non-additive genetic benefits (compatible genes), the identity of the most 'compatible' mate is assumed to depend on the choosy individual's own genotype. It is therefore unclear how choice for non-additive genetic benefits could contribute to directional mating preferences and consequently the evolution of ornamentation. In free-living song sparrows (Melospiza melodia), individual males varied in their kinship with the female population. Furthermore, a male's song repertoire size, a secondary sexual trait, was negatively correlated with kinship such that males with larger repertoires were less closely related to the female population. After excluding close relatives as potential mates, individual females were on average less closely related to males with larger repertoires. Therefore, female song sparrows expressing directional preferences for males with larger repertoires would on average acquire relatively unrelated mates and produce relatively outbred offspring. Such non-additive genetic fitness benefits of directional mating preferences, which may reflect genetic dominance variance expressed in structured populations, should be incorporated into genetic models of sexual selection.  相似文献   

13.
    
Social interactions, especially those involving competition among individuals, are important in domesticated livestock and in natural populations. The heritability of traits affected by such interactions has two components, one originating in the individual like that of classical traits (direct effects) and the other originating in other group members (indirect effects). The latter type of trait represents a significant source of ‘hidden heritability’ and it requires population structure and knowledge from relatives in order to access it for selective breeding. When ignored, competitive interactions may increase as an indirect response to direct selection, resulting in diminished yields. We illustrate how population genetic structure affects the response to selection of traits with indirect genetic effects using population genetic and quantitative genetic theory. Population genetic theory permits us to connect our results to the existing body of theory on kin and group selection in natural populations. The quantitative genetic perspective allows us to see how breeders have used knowledge from relatives and family selection in the domestication of plants and animals to improve the welfare and production of livestock by incorporating social genetic effects in the breeding program. We illustrate the central features of these models by reviewing empirical studies from domesticated chickens.  相似文献   

14.
Oh KP 《Molecular ecology》2011,20(13):2657-2659
Social monogamy is nearly ubiquitous across avian taxa,but evidence from a proliferation of studies utilizing molecular paternity analysis suggests that sexual monogamy is the rare exception rather than the rule (Griffith et al. 2002). Efforts to explain the prevalence of extra-pair paternity (EPP) have largely focused on the potential fitness benefits for offspring genetic quality, as females are less likely to benefit directly from seeking extra-pair mates. In particular, there has been considerable interest in the degree to which EPP may represent an adaptive female strategy to avoid inbreeding (or outbreeding)depression when paired with a highly related (or unrelated)social mate (Kempenaers 2007). Others have argued that, because relatives share many genes identical by descent,females might increase their own inclusive fitness by providing additional breeding opportunities to genetically related males (Waser et al. 1986; Kokko & Ots 2006). Thus, in the absence of significant inbreeding depression, pursuing EPP with relatives should be favoured by kin selection, although there exist few unambiguous empirical examples of such preferences in the literature. In this issue of Molecular Ecology, Wang &Lu (2011) present an analysis of mating patterns with respect to genetic relatedness of social and extra-pair partners in the ground tit (Parus humilis), a facultative cooperative breeder in which socially monogamous pairs occasionally form cooperative groups with unpaired helper males (Fig. 1). Consistent with the predictions of the kin-selection hypothesis, females in both bi-parental and cooperative groups preferentially engaged in extra-pair matings with relatives, irrespective of relatedness to their social mates, and while suffering no apparent costs of inbreeding depression in their progeny. These finding shave several exciting implications for our understanding of avian mating system diversity and the evolution of cooperative breeding.  相似文献   

15.
16.
  总被引:1,自引:0,他引:1  
The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.  相似文献   

17.
18.
Evolutionary conflicts among social hymenopteran nestmates are theoretically likely to arise over the production of males and the sex ratio. Analysis of these conflicts has become an important focus of research into the role of kin selection in shaping social traits of hymenopteran colonies. We employ microsatellite analysis of nestmates of one social hymenopteran, the primitively eusocial and monogynous bumblebee Bombus hypnorum, to evaluate these conflicts. In our 14 study colonies, B. hypnorum queens mated between one and six times (arithmetic mean 2.5). One male generally predominated, fathering most of the offspring, thus the effective number of matings was substantially lower (1-3.13; harmonic mean 1.26). In addition, microsatellite analysis allowed the detection of alien workers, those who could not have been the offspring of the queen, in approximately half the colonies. Alien workers within the same colony were probably sisters. Polyandry and alien workers resulted in high variation among colonies in their sociogenetic organization. Genetic data were consistent with the view that all males (n = 233 examined) were produced by a colony's queen. Male parentage was therefore independent of the sociogenetic organization of the colony, suggesting that the queen, and not the workers, was in control of the laying of male-destined eggs. The population-wide sex ratio (fresh weight investment ratio) was weakly female biased. No evidence for colony-level adaptive sex ratio biasing could be detected.  相似文献   

19.
KAREN J. NUTT 《Molecular ecology》2008,17(15):3541-3556
Knowledge of the dispersal status of group members is important to understanding how sociality may have evolved within a species. I assessed the effectiveness of four techniques for elucidating dispersal behaviour in a rock-dwelling rodent ( Ctenodactylus gundi ) with small group sizes (2–10 animals): genetic parentage assignment, haplotype data and kinship analyses, assignment testing, and F -statistics. The first two methods provided the greatest insight into gundi dispersal behaviour. Assignment testing and F -statistics proved of limited use for elucidating fine-scale dispersal, but could detect large-scale patterns despite low sex-biased dispersal intensity (1.9 : 1) because of moderate genetic differentiation among groups ( F ST = 0.10). Findings are discussed in light of current dispersal theory. In general, gundi dispersal is plastic, and seems to be dependent on body weight (for males), group composition, and scale of analysis (total dispersal events recorded within the population were almost twice the immigration rate into the population). Most groups were comprised of a single matriline and one immigrant male. Immigrant rather than philopatric males bred with group females. Dispersal among groups was male-biased, but dispersal or philopatry could occur by either sex. During a drought, both sexes delayed dispersal and cooperative social units formed. Whether such behaviour resulted directly from the drought or not remains unclear, however, since comparative information was not available from nondrought years. Combining fine-scale analyses with information on large-scale patterns provided substantial insight into gundi dispersal behaviour despite the limited movement of animals during a drought, and may prove useful for elucidating dispersal behaviour in other social animals.  相似文献   

20.
    
Evolutionary biologists have an array of powerful theoretical techniques that can accurately predict changes in the genetic composition of populations. Changes in gene frequencies and genetic associations between loci can be tracked as they respond to a wide variety of evolutionary forces. However, it is often less clear how to decompose these various forces into components that accurately reflect the underlying biology. Here, we present several issues that arise in the definition and interpretation of selection and selection coefficients, focusing on insights gained through the examination of selection coefficients in multilocus notation. Using this notation, we discuss how its flexibility—which allows different biological units to be identified as targets of selection—is reflected in the interpretation of the coefficients that the notation generates. In many situations, it can be difficult to agree on whether loci can be considered to be under “direct” versus “indirect” selection, or to quantify this selection. We present arguments for what the terms direct and indirect selection might best encompass, considering a range of issues, from viability and sexual selection to kin selection. We show how multilocus notation can discriminate between direct and indirect selection, and describe when it can do so.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号