首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using histochemical analysis (NADPH-diaphorase) we have investigated the influence of intraperitoneal administration of kainic acid (KA), hypoxia and combination of both these factors on neurons of the hippocampus and on the primary auditory cortex (PAC) in male rats of the Wistar strain. Kainic acid was administered to 18-day-old animals, which were exposed to long-lasting repeated hypoxia from the 2nd till the 17th day of age in a hypobaric chamber (for 8 hours a day). At the age of 1 year, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostate sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in CA1 and CA3 areas of the hippocampus, in the dentate gyrus and in the PAC. Both, hypoxia and KA lowered the number of NADPH-diaphorase positive neurons in the hilus, dorsal and ventral blades of the dentate gyrus, CA1 and CA3 areas of the hippocampus. On the contrary, KA given to the hypoxic animals increased the number of NADPH-diaphorase positive neurons in the dorsal blade of the dentate gyrus and PAC.  相似文献   

2.
Using histochemical analysis (NADPH-diaphorase) we have been investigating the influence of intraperitoneal administration of kainic acid (KA), hypoxia and combination of both these factors on neurons of the hippocampus and on the primary auditory cortex (PAC) in male rats of the Wistar strain. Kainic acid was administered to 18-day-old animals, which were exposed to long-lasting repeated hypoxia from the 2nd till the 17th day of age in a hypobaric chamber (for 8 h a day). At the age of 22 or 90 days, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostate sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in the hippocampus, in the dentate gyrus and in the PAC. In 22-day-old animals both hypoxia and KA increased the number of NADPH-diaphorase positive neurons in the hilus, CA1, CA3 areas of the hippocampus and in the PAC. On the contrary, KA given to hypoxic animals lowered the number of NADPH-diaphorase positive neurons in the dentate gyrus. In 90-day-old animals, hypoxia and KA given to both normoxic and hypoxic animals lowered the number of NADPH-diaphorase positive neurons in some areas of the central nervous system.  相似文献   

3.
The intrahippocampal injection of two agonists of excitatory aminoacid (EAA) receptors elicited neuronal damages localized in CA1 and dentate gyrus for N-methyl-D-aspartate (NMDA) (20 nmol) and extended to the various hippocampal areas, except dentate gyrus for kainic acid (KA) (2.5 nmol). The pretreatment of the animals with N-[1-(2-thienyl)cyclohexyl]piperidine (TCP) (20 mg/kg), a noncompetitive NMDA-receptor antagonist, prevented the neuronal injury induced by NMDA and KA in CA1. The distribution of neuronal damages and of TCP-protected areas closely correlated to that of EEA-receptors and of TCP binding sites in the hippocampus.  相似文献   

4.
5.
Kim HC  Jhoo WK  Ko KH  Kim WK  Bing G  Kwon MS  Shin EJ  Suh JH  Lee YG  Lee DW 《Life sciences》2000,66(4):317-326
We examined the effects of cigarette smoke (CS) on three parameters associated with kainic acid (KA)-induced neurotoxicity: seizure activity, cell loss in the hippocampus, and increased Fos-related antigen (FRA) expression. Animals were exposed to the main stream of CS from 15 Kentucky 2R1F research cigarettes containing 28.6 mg tar and 1.74 mg nicotine per cigarette, for 10 min a day, 6 days per week, for 4 weeks, using an automatic smoking machine. KA administration (10 mg/kg, i.p.) produced robust behavioral convulsions lasting 4-5 h. Pre-exposure to CS significantly reduced the seizures, mortality, and severe loss of cells in regions CA1 and CA3 of the hippocampus after KA administration. Consistently, pre-exposure to CS significantly attenuated the KA-induced increased FRA immunoreactivity in the hippocampus. In contrast, pretreatment with central nicotinic antagonist, mecamylamine (2 or 10 mg/kg, i.p.) blocked the neuroprotective effects mediated by CS in a dose-dependent manner. These results indicate that CS exposure provides neuroprotection against the KA insult via nicotinic receptor activation.  相似文献   

6.
蝎毒诱导红藻氨酸癫痫大鼠海马内GABA释放的免疫组化观察   总被引:11,自引:0,他引:11  
Jiang CL  Zhang WQ 《生理学报》1999,(6):609-614
本工作用红藻氨酸癫痫模型,经蝎毒处理后观察大鼠癫痫发作的行为变化并检测大鼠海马内GABA免疫反应样物质对国产钳蝎粗毒抗癫痫反复发作的细胞机制进行初步探讨。KA癫痫大鼠经蝎毒处理3周后,与实验对照组相比,能明显减轻发作行为。GABA免疫组化的实验显示,用KA3周后,实验对照组大鼠与空白对照组腹侧海马尤其是海马门区GABA免疫反应阳性神经元数目明显减少,免疫染色强度明显降低。实验给药组大鼠8例中,有6  相似文献   

7.
海仁酸致痫大鼠海马组织AMPA受体GluR2表达的变化   总被引:6,自引:2,他引:4  
目的 为了研究AMPA受体在癫痫发生中的作用。方法 本研究用免疫组织化学方法观察了海仁酸致痫大鼠海马组织AMPA GluR2受体的表达变化。结果 在侧脑室注射海仁酸后 1h ,4h ,12h ,2 4h及 7d ,大鼠海马CA3区及齿状回GluR2的表达明显减弱 ,显微图像分析 :与对照组相比 ,KA 4h ,KA 12h ,KA 2 4h ,KA 7d组大鼠海马组织GluR2阳性神经元平均光密度值降低 ,差异有显著性 (P <0 0 5 )。结论 在癫痫发作过程中AMPA受体 GluR2亚单位表达改变可能与癫痫发作导致的神经元损伤有密切关系。  相似文献   

8.
Neurogenesis occurs in dentate gyrus of adult hippocampus under the influence of various mitogenic factors. Growth factors besides instigating the proliferation of neuronal progenitor cells (NPCs) in dentate gyrus, also supports their differentiation to cholinergic neurons. In the present study, an attempt has been made to investigate the neurotrophic effect of bFGF in Kainic acid (KA) induced cognitive dysfunction in rats. Stereotaxic lesioning using (KA) was performed in hippocampal CA3 region of rat's brain. Four-weeks post lesioning rats were assessed for impairment in learning and memory using Y maze followed by bFGF infusion in dentate gyrus region. The recovery was evaluated after bFGF infusion using neurochemical, neurobehavioural and immunohistochemical approaches and compared with lesioned group. Significant impairment in learning and memory (P < 0.01) observed in lesioned animals, four weeks post lesioning exhibited significant restoration (P < 0.001) following bFGF infusion twice at one and four week post lesion. The bFGF infused animals exhibited recovery in hippocampus cholinergic (76%)/ dopaminergic (46%) receptor binding and enhanced Choline acetyltransferase (ChAT) immunoreactivity in CA3 region. The results suggest restorative potential of bFGF in cognitive dysfunctions, possibly due to mitogenic effect on dentate gyrus neurogenic area leading to generation and migration of newer cholinergic neurons.  相似文献   

9.
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.  相似文献   

10.
Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2-3 years) and aged (10-12 years) dogs. We also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-gamma expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.  相似文献   

11.
17α-Ethynylestradiol (EE2), a major constituent of many oral contraceptives, is similar in structure to 17β-estradiol, which has neuroprotective properties in several animal models. This study explored the potential neuroprotective actions of EE2 against kainic and quinolinic acid toxicity in the hippocampus of adult ovariectomized Wistar rats. A decrease in the number of Nissl-stained neurons and the induction of vimentin immunoreactivity in astrocytes was observed in the hilus of the dentate gyrus of the hippocampus after the administration of either kainic acid or quinolinic acid. EE2 prevented the neuronal loss and the induction of vimentin immunoreactivity induced by kainic acid at low (1 μg/rat) and high (10–100 μg/rat) doses and exerted a protection against quinolinic acid toxicity at a low dose (1 μg/rat) only. These observations demonstrate that EE2 exerts neuroprotective actions against excitotoxic insults. This finding is relevant for the design of new neuroprotective estrogenic compounds.  相似文献   

12.
目的观察海人酸(kainic acid,KA)所致癫痫(epilepsy,EP)小鼠海马Ste20蛋白激酵素(MST3)表达水平的变化,探讨MST3在癫痫发病过程中的可能作用。方法选用成年雄性小鼠,并随机分成模型组和对照组。模型组小鼠侧脑室注射2μL(100 ng/μL)KA,分别于术后3、8、24 h收集动物标本以进行检测。使用RT-PCR和Western Blot测定MST3 mRNA含量和MST3蛋白动态表达变化,应用免疫组化观察MST3在海马的表达分布与特点。结果与正常对照组相比,模型组海马组织内MST3mRNA的表达随时间持续升高,24 h达到高峰;MST3的蛋白表达也表现出同样的动态升高趋势;术后3~24 h的模型组海马免疫组化检测显示,模型组MST3主要以海马齿状回、门回区、CA3区域表达增加为主,并且这些区域表达逐渐递增。结论随着时间的推移,MST3表达水平呈现逐渐增加趋势,可能与神经元损伤造成的凋亡之间有密切的关系,提示MST3可能在癫痫发病过程中起重要作用。  相似文献   

13.
The present study showed a wide presence of CCL28 in mouse CNS, including cerebral, cerebellum, brain stem and spinal cord. In hippocampus, the expression of CCL28 at both mRNA and protein level was clarified. The CCL28 expression was mainly localized in pyramidal cells of CA area, granular cells of dentate gyrus and some interneurons in CA area and hilus. Double-labelling immunocytochemistry revealed that most of calbindin, calretinin and parvalbumin immunopositive neurons expressed CCL28. During and after pilocarpine induced status epilepticus (SE), a down-regulated expression of CCL28 in hippocampal interneurons in the CA1 area and in the hilus of the dentate gyrus was demonstrated. The present study may, therefore provide evidence that CCL28 may have a novel role in CNS and may be involved in the loss of hippocampal interneurons, and subsequent disinhibition of pyramidal neurons.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF) mRNA expression was studied in the hippocampus at various developmental stages in normal rats and following kainic acid (KA)-induced seizure activity. Systemic administration of KA strongly elevated BDNF mRNA levels in all hippocampal subregions after postnatal day 21. In contrast, even though KA induced intense behavioral seizure activity at postnatal day 8, the seizures were not associated with elevations of BDNF mRNA levels, indicating a clear dissociation between behavioral seizures and increases in BDNF mRNA levels and contradicting the view that BDNF mRNA expression is principally regulated by neuronal activity. In the dentate gyrus at postnatal day 13, intense BDNF mRNA expression was limited to a defined area at the border between granule cell and molecular layers, suggesting the possibility that segregation of BDNF mRNA into defined subcellular compartments may play a role in establishing the well-delineated patterns of innervation in the hippocampus.  相似文献   

15.
16.
Neuronal excitation involving the excitatory glutamate receptors is recognized as an important underlying mechanism in neurodegenerative disorders. Excitation resulting from stimulation of the ionotropic glutamate receptors is known to cause the increase in intracellular calcium and trigger calcium-dependent pathways that lead to neuronal apoptosis. Kainic acid (KA) is an agonist for a subtype of ionotropic glutamate receptor, and administration of KA has been shown to increase production of reactive oxygen species, mitochondrial dysfunction, and apoptosis in neurons in many regions of the brain, particularly in the hippocampal subregions of CA1 and CA3, and in the hilus of dentate gyrus (DG). Systemic injection of KA to rats also results in activation of glial cells and inflammatory responses typically found in neurodegenerative diseases. KA-induced selective vulnerability in the hippocampal neurons is related to the distribution and selective susceptibility of the AMPA/kainate receptors in the brain. Recent studies have demonstrated ability of KA to alter a number of intracellular activities, including accumulation of lipofuscin-like substances, induction of complement proteins, processing of amyloid precursor protein, and alteration of tau protein expression. These studies suggest that KA-induced excitotoxicity can be used as a model for elucidating mechanisms underlying oxidative stress and inflammation in neurodegenerative diseases. The focus of this review is to summarize studies demonstrating KA-induced excitotoxicity in the central nervous system and possible intervention by anti-oxidants.  相似文献   

17.
Activity-induced and developmental downregulation of the Nogo receptor   总被引:7,自引:0,他引:7  
The three axon growth inhibitory proteins, myelin associated glycoprotein, oligodendrocyte-myelin glycoprotein and Nogo-A, can all bind to the Nogo-66 receptor (NgR). This receptor is expressed by neurons with high amounts in regions of high plasticity where Nogo expression is also high. We hypothesized that simultaneous presence of high levels of Nogo and its receptor in neurons confers a locked state to hippocampal and cortical microcircuitry and that one or both of these proteins must be effectively and temporarily downregulated to permit plastic structural changes underlying formation of long-term memory. Hence, we subjected rats to kainic acid treatment and exposed rats to running wheels and measured NgR mRNA levels by quantitative in situ hybridization at different time points. We also studied spinal cord injuries and quantified NgR mRNA levels in spinal cord and ganglia during a critical postnatal period using real-time PCR. Strikingly, kainic acid led to a strong transient downregulation of NgR mRNA levels in gyrus dentatus, hippocampus, and neocortex during a time when BDNF mRNA was upregulated instead. Animals exposed to running wheels for 3 and 7, but not 1 or 21, days showed a significant downregulation of NgR mRNA in cortex, hippocampus and the dentate gyrus. NgR mRNA levels decreased from high to low expression in spinal cord and ganglia during the first week of life. No robust regulation of NgR was observed in the spinal cord following spinal cord injury. Together, our data show that NgR levels in developing and adult neurons are regulated in vivo under different conditions. Strong, rapid and transient downregulation of NgR mRNA in response to kainic acid and after wheel running in cortex and hippocampus suggests a role for NgR and Nogo-A in plasticity, learning and memory.  相似文献   

18.
New neurons are continuously added to hippocampal circuitry involved with spatial learning and memory throughout life. These new neurons originate from neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). Recent studies indicate that vascular reconstruction is closely connected with neurogenesis, but little is known about its mechanism. We have examined vascular reconstruction in the hippocampus of adult mouse brain after the administration of the antidepressant fluoxetine, a potent inducer of hippocampal neurogenesis. The immunohistochemistry of laminin and CD31 showed that filopodia of endothelial cells sprouted from existing thick microvessels and often formed a bridge between two thick microvessels. These filopodia were frequently seen at the molecular layer and dentate hilus of the DG, the stratum lacunosum-moleculare of the CA1, and the stratum oriens of the CA3. The filopodia were exclusively localized along cellular processes of astrocytes, but such intimate association was not seen with cell bodies and processes of NSPCs. The administration of fluoxetine significantly increased vascular density by enlarging the luminal size of microvessels and eliminating the filopodia of endothelial cells in the molecular layer and dentate hilus. Treatment with fluoxetine increased the number of proliferating NSPCs in the granule cell layer and dentate hilus, and that of endothelial cells in the granule cell layer. Thus, antidepressant-induced vascular dynamics in the DG are possibly attributable to the alteration of the luminal size of microvessels rather than to proliferation of endothelial cells.  相似文献   

19.
Pregnenolone and dehydroepiandrosterone (DHEA) are sex hormone precursors and neuroprotective steroids. Effects of pregnenolone and DHEA may be in part mediated by their conversion to testosterone and by the consecutive conversion of testosterone to estradiol by the enzyme aromatase. This enzyme is induced in reactive astrocytes after different forms of neurodegenerative lesions and the resultant local production of estradiol in the brain has been shown to be neuroprotective. The participation of aromatase in the neuroprotective effect of pregnenolone and DHEA has been assessed in this study. The protective effect of different doses (12.5, 25, 50, and 100 mg/kg) of pregnenolone or DHEA, against systemic kainic acid (7 mg/kg b.w.), was assessed on hippocampal hilar neurons in gonadectomized Wistar male rats. To determine whether the neuroprotective effect of pregnenolone and DHEA was dependent on their conversion to estradiol, the aromatase inhibitor fadrozole (4.16 mg/ml) was administered using subcutaneous osmotic minipumps. The number of Nissl-stained neurons in the hilus of the dentate gyrus of the hippocampal formation was estimated by the optical disector method. The administration of kainic acid resulted in a significant decrease in the number of hilar neurons compared to rats injected with vehicles. Pregnenolone and DHEA showed a dose-dependent protective effect of hilar neurons against kainic acid. The administration of the aromatase inhibitor fadrozole blocked the neuroprotective effect of pregnenolone and DHEA. These findings suggest that estradiol formation by aromatase mediates neuroprotective effects of pregnenolone and DHEA against excitotoxic-induced neuronal death in the hippocampus.  相似文献   

20.
采用传统H.E 染色和Golgi-Cox 染色方法观察成年牦牛海马结构的形态和细胞构筑,并通过DCX - DAB免疫组化染色和DCX/ NeuN、GFAP / NeuN 双重免疫荧光标记等技术观察齿状回颗粒下层中的新生神经元和放射状胶质细胞。结果表明,牦牛海马结构主要包括齿状回和海马本部,二者分层清晰。海马的主要细胞为颗粒细胞、苔藓细胞和锥体细胞。CA3 区的锥体细胞胞体较CA1 区的大,但其顶树突的平均长度较短。CA1 区的锥体细胞明显分为两层,而CA3 区的则为一层。DCX 阳性细胞的胞体主要集中在齿状回颗粒下层靠近门区处,沿颗粒层内侧单个或少数聚集分布。沿齿状回颗粒下层分布着一层GFAP 阳性的放射状胶质细胞样细胞,其胞质和单极性的细长突起均呈GFAP 阳性,而胞核为阴性。在整个海马结构中均有大量星形GFAP 阳性细胞散在分布,特别是海马分子层和门区内靠近颗粒层部分的密度较其它部位大。牦牛海马的形态结构与绵羊的相似,而与大鼠、小鼠、家猫、兔子等小型哺乳动物有一定差别。两种DCX 免疫组化实验结果表明在牦牛海马中存在着新生神经元。GFAP 免疫荧光标记表明,牦牛海马结构中分布有星形胶质细胞;特别是放射状胶质细胞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号