首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Background  

Pre-processing methods for two-sample long oligonucleotide arrays, specifically the Agilent technology, have not been extensively studied. The goal of this study is to quantify some of the sources of error that affect measurement of expression using Agilent arrays and to compare Agilent's Feature Extraction software with pre-processing methods that have become the standard for normalization of cDNA arrays. These include log transformation followed by loess normalization with or without background subtraction and often a between array scale normalization procedure. The larger goal is to define best study design and pre-processing practices for Agilent arrays, and we offer some suggestions.  相似文献   

2.

Background  

Intensity values measured by Affymetrix microarrays have to be both normalized, to be able to compare different microarrays by removing non-biological variation, and summarized, generating the final probe set expression values. Various pre-processing techniques, such as dChip, GCRMA, RMA and MAS have been developed for this purpose. This study assesses the effect of applying different pre-processing methods on the results of analyses of large Affymetrix datasets. By focusing on practical applications of microarray-based research, this study provides insight into the relevance of pre-processing procedures to biology-oriented researchers.  相似文献   

3.

Background  

Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples.  相似文献   

4.

Background  

Analysis of DNA microarray data usually begins with a normalization step where intensities of different arrays are adjusted to the same scale so that the intensity levels from different arrays can be compared with one other. Both simple total array intensity-based as well as more complex "local intensity level" dependent normalization methods have been developed, some of which are widely used. Much less developed methods for microarray data analysis include those that bypass the normalization step and therefore yield results that are not confounded by potential normalization errors.  相似文献   

5.

Motivation

It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients. However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not been evaluated, nor has clustering reproducibility. Here, we made use of the NHANES survey to compare clusters generated with various combinations of pre-processing and clustering algorithms, and tested their reproducibility in two separate samples.

Method

Values of 44 biomarkers and 19 health/life style traits were extracted from the National Health and Nutrition Examination Survey (NHANES). The 1999–2002 survey was used for training, while data from the 2003–2006 survey was tested as a validation set. Twelve combinations of pre-processing and clustering algorithms were applied to the training set. The quality of the resulting clusters was evaluated both by considering their properties and by comparative enrichment analysis. Cluster assignments were projected to the validation set (using an artificial neural network) and enrichment in health/life style traits in the resulting clusters was compared to the clusters generated from the original training set.

Results

The clusters obtained with different pre-processing and clustering combinations differed both in terms of cluster quality measures and in terms of reproducibility of enrichment with health/life style properties. Z-score normalization, for example, dramatically improved cluster quality and enrichments, as compared to unprocessed data, regardless of the clustering algorithm used. Clustering diabetes patients revealed a group of patients enriched with retinopathies. This could indicate that routine laboratory tests can be used to detect patients suffering from complications of diabetes, although other explanations for this observation should also be considered.

Conclusions

Clustering according to classical clinical biomarkers is a robust process, which may help in patient stratification. However, optimization of the pre-processing and clustering process may be still required.  相似文献   

6.
7.

Background  

Affymetrix oligonucleotide arrays simultaneously measure the abundances of thousands of mRNAs in biological samples. Comparability of array results is necessary for the creation of large-scale gene expression databases. The standard strategy for normalizing oligonucleotide array readouts has practical drawbacks. We describe alternative normalization procedures for oligonucleotide arrays based on a common pool of known biotin-labeled cRNAs spiked into each hybridization.  相似文献   

8.

Background  

Illumina Infinium whole genome genotyping (WGG) arrays are increasingly being applied in cancer genomics to study gene copy number alterations and allele-specific aberrations such as loss-of-heterozygosity (LOH). Methods developed for normalization of WGG arrays have mostly focused on diploid, normal samples. However, for cancer samples genomic aberrations may confound normalization and data interpretation. Therefore, we examined the effects of the conventionally used normalization method for Illumina Infinium arrays when applied to cancer samples.  相似文献   

9.
10.

Background  

Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization.  相似文献   

11.
12.
13.
An ideal expression algorithm should be able to tell truly different expression levels with small false positive errors and be robust to assay changes. We propose two algorithms. PQN is the non-central trimmed mean of perfect match intensities with quantile normalization. DQN is the non-central trimmed mean of differences between perfect match and mismatch intensities with quantile normalization. The quantiles for normalization can be either empirical or theoretical. When array types and/or assay change in a study, the normalization to common quantiles at the probe set level is essential. We compared DQN, PQN, RMA, GCRMA, DCHIP, PLIER and MAS5 for the Affymetrix Latin square data and our data of two sets of experiments using the same bone marrow but different types of microarrays and different assay. We found the computation for AUC of ROC at affycomp.biostat.jhsph.edu can be improved.  相似文献   

14.
MOTIVATION: Modern strategies for mapping disease loci require efficient genotyping of a large number of known polymorphic sites in the genome. The sensitive and high-throughput nature of hybridization-based DNA microarray technology provides an ideal platform for such an application by interrogating up to hundreds of thousands of single nucleotide polymorphisms (SNPs) in a single assay. Similar to the development of expression arrays, these genotyping arrays pose many data analytic challenges that are often platform specific. Affymetrix SNP arrays, e.g. use multiple sets of short oligonucleotide probes for each known SNP, and require effective statistical methods to combine these probe intensities in order to generate reliable and accurate genotype calls. RESULTS: We developed an integrated multi-SNP, multi-array genotype calling algorithm for Affymetrix SNP arrays, MAMS, that combines single-array multi-SNP (SAMS) and multi-array, single-SNP (MASS) calls to improve the accuracy of genotype calls, without the need for training data or computation-intensive normalization procedures as in other multi-array methods. The algorithm uses resampling techniques and model-based clustering to derive single array based genotype calls, which are subsequently refined by competitive genotype calls based on (MASS) clustering. The resampling scheme caps computation for single-array analysis and hence is readily scalable, important in view of expanding numbers of SNPs per array. The MASS update is designed to improve calls for atypical SNPs, harboring allele-imbalanced binding affinities, that are difficult to genotype without information from other arrays. Using a publicly available data set of HapMap samples from Affymetrix, and independent calls by alternative genotyping methods from the HapMap project, we show that our approach performs competitively to existing methods. AVAILABILITY: R functions are available upon request from the authors.  相似文献   

15.

Background  

Alternative splicing is an important mechanism that increases protein diversity and functionality in higher eukaryotes. Affymetrix exon arrays are a commercialized platform used to detect alternative splicing on a genome-wide scale. Two probe summarization algorithms, PLIER (Probe Logarithmic Intensity Error) and RMA (Robust Multichip Average), are commonly used to compute gene-level and exon-level expression values. However, a systematic comparison of these two algorithms on their effects on high-level analysis of the arrays has not yet been reported.  相似文献   

16.

Key message

New software to make tetraploid genotype calls from SNP array data was developed, which uses hierarchical clustering and multiple F1 populations to calibrate the relationship between signal intensity and allele dosage.

Abstract

SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, the relationship between signal intensity and allele dosage must be calibrated for each marker. We developed an improved computational method to automate this process, which is provided as the R package ClusterCall. In the training phase of the algorithm, hierarchical clustering within an F1 population is used to group samples with similar intensity values, and allele dosages are assigned to clusters based on expected segregation ratios. In the prediction phase, multiple F1 populations and the prediction set are clustered together, and the genotype for each cluster is the mode of the training set samples. A concordance metric, defined as the proportion of training set samples equal to the mode, can be used to eliminate unreliable markers and compare different algorithms. Across three potato families genotyped with an 8K SNP array, ClusterCall scored 5729 markers with at least 0.95 concordance (94.6% of its total), compared to 5325 with the software fitTetra (82.5% of its total). The three families were used to predict genotypes for 5218 SNPs in the SolCAP diversity panel, compared with 3521 SNPs in a previous study in which genotypes were called manually. One of the additional markers produced a significant association for vine maturity near a well-known causal locus on chromosome 5. In conclusion, when multiple F1 populations are available, ClusterCall is an efficient method for accurate, autotetraploid genotype calling that enables the use of SNP data for research and plant breeding.
  相似文献   

17.

Background  

With the availability of the Affymetrix exon arrays a number of tools have been developed to enable the analysis. These however can be expensive or have several pre-installation requirements. This led us to develop an analysis workflow for analysing differential splicing using freely available software packages that are already being widely used for gene expression analysis. The workflow uses the packages in the standard installation of R and Bioconductor (BiocLite) to identify differential splicing. We use the splice index method with the LIMMA framework. The main drawback with this approach is that it relies on accurate estimates of gene expression from the probe-level data. Methods such as RMA and PLIER may misestimate when a large proportion of exons are spliced. We therefore present the novel concept of a gene correlation coefficient calculated using only the probeset expression pattern within a gene. We show that genes with lower correlation coefficients are likely to be differentially spliced.  相似文献   

18.

Background  

Gene expression measurements from breast cancer (BrCa) tumors are established clinical predictive tools to identify tumor subtypes, identify patients showing poor/good prognosis, and identify patients likely to have disease recurrence. However, diverse breast cancer datasets in conjunction with diagnostic clinical arrays show little overlap in the sets of genes identified. One approach to identify a set of consistently dysregulated candidate genes in these tumors is to employ meta-analysis of multiple independent microarray datasets. This allows one to compare expression data from a diverse collection of breast tumor array datasets generated on either cDNA or oligonucleotide arrays.  相似文献   

19.
20.
We propose an extension to quantile normalization that removes unwanted technical variation using control probes. We adapt our algorithm, functional normalization, to the Illumina 450k methylation array and address the open problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets from The Cancer Genome Atlas and a large case–control study, we show that our algorithm outperforms all existing normalization methods with respect to replication of results between experiments, and yields robust results even in the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable control probes are available.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0503-2) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号