首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Watermelon (Citrullus vulgaris) urease was immobilized in 3.5% alginate leading to 72% immobilization. There was no leaching of the enzyme over a period of 15 days at 4°C. It continued to hydrolyse urea at a faster rate upto 90 min of incubation. The immobilized urease exhibited a shift of apparent pH optimum by one unit towards acidic side (from pH 8.0 to 7.0). The Km was found to be 13.3 mM; 1.17 times higher than the soluble enzyme (11.4 mM). The beads were fairly stable upto 50°C and exhibited activity even at ?10°C. The enzyme was significantly activated by ME and it exhibited two peaks of activation; one at lower concentration and another at higher concentration. Time-dependent ureolysis in presence of ME progressed at a much elevated rate. Unlike soluble enzyme, which was inhibited at 200 mM urea, the immobilized enzyme was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2000 mM urea. Moreover, the inhibition caused by high urea concentration was partially abolished by ME. The significance of the observations is discussed.  相似文献   

2.
The paper deals with kinetics of the urea hydrolysis by microbial-origin urease dissolved and immobilized on the organic silica surface. It is shown that hydrolysis kinetics for soluble urease is described by the Michaelis-Menten equation until the concentration of urea reaches 1 M. Two fractions differing in the Michaelis constant are revealed for silochrome immobilized urease. The rate of urea hydrolysis by native and immobilized urease was studied depending on the pH value in presence of the substrate in the 1 M and 5 mM concentration. The hydrolysis rate of 1 M urea in the buffer-free solution by silochrome-immobilized urease is practically independent of pH within 4.5-6.5. Application of a 2.5 mM phosphate-citrate buffer as a solvent causes an increase in the hydrolysis rate within this pH range. For a soluble urease the 1 M urea hydrolysis rate dependence on pH is ordinary at pH 5.8-6.0. If the substrate concentration is 5 mM, the pH-dependences for the rate of the urea hydrolysis by silochrome- and aerosil-immobilized urease are close and at pH above 6.0 coincide with those for a soluble enzyme. The found differences in the properties of soluble and immobilized ureases are explained by the substrate and reaction products diffusion.  相似文献   

3.
Both stability and catalytic activity of the HynSL Thiocapsa roseopersicina hydrogenase in the presence of different water-miscible organic solvents were investigated. For all organic solvents under study the substantial raise in hydrogenase catalytic activity was observed. The stimulating effect of acetone and acetonitrile on the reaction rate rose with the increase in solvent concentration up to 80%. At certain concentrations of acetonitrile and acetone (60–80%, v/v in buffer solution) the enzyme activity was improved even 4–5 times compared to pure aqueous buffer. Other solvents (aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran) improved the enzyme activity at low concentrations and caused enzyme inactivation at intermediate concentrations. The long-term incubation of the hydrogenase with aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran at intermediate concentrations of the latter caused enzyme inactivation. The reduced form of hydrogenase was found to be much more sensitive to action of these organic solvents than the enzyme being in oxidized state. The hydrogenase is rather stable at high concentrations of acetone or acetonitrile during long-term storage: its residual activity after incubation in these solvents upon air within 30 days was about 50%, and immobilized enzyme remained at the 100% of its activity during this period.  相似文献   

4.
A lysosomal cysteine protease cathepsin L (3.4.22.15) purified from goat brain has been immobilized in calcium alginate beads in the presence of BSA through entrapment. Most favorable conditions for the entrapment were standardized as 3.0%(w/v) alginate and 1.5%(w/v) calcium chloride. Comparing the properties of free and immobilized enzyme using Z-Phe-Arg-4mβNA as chromogenic substrate, it was found that the immobilized enzyme could retain~70% of the original activity after five successive batch reactions. Vis-à-vis the free enzyme, immobilization conferred high stability to the enzyme both in the acidic and alkaline range, the enzyme lost no activity up to 60°C (Temperature stability for free enzyme is only up to 50°C). The pH optima for the enzyme shifted from 6.2 to 6.6 on entrapment. The increase in activity and stability of the enzyme in immobilized form even in the presence of high concentration of DMSO and ethanol is surprising and may make it useful for catalyzing organic reactions like trans-esterification and trans-amidation.  相似文献   

5.
《Biochemical education》1999,27(2):114-117
An experiment is described in which students carry out urease purification, immobilization and its application in blood urea estimation. Urease from pigeonpea is partially purified using acetone fractionation and then immobilized on calcium alginate in the form of beads. The immobilized enzyme has a better shelf-life at 4°C than soluble enzyme. Various aspects of enzyme immobilization are discussed. Blood urea estimation is carried out with immobilized enzyme beads and the beads can be used repeatedly for this purpose making it an economical procedure compared to commercial kits.  相似文献   

6.
Urease from dehusked seeds of watermelon was immobilized in 1.5% agarose gel with 53.9% entrapment. There was negligible leaching (<10% at 4°C) and the same gel membrane could repeatedly be used for seven days. The immobilization exhibited no apparent change in the optimum pH but there was a significant decrease in the optimum temperature (50°C as compared to 65°C for soluble urease). The immobilized urease revealed an apparentK m of 9.3±0.3 mM; 1.2 times lower than the soluble enzyme (11.4±0.2 mM). Unlike soluble enzyme which was inhibited at 200 mM urea, the immobilized urease was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2 M urea. The time-dependent thermal inactivation kinetics at 48 and 52°C was found to be biphasic, in which half of the initial activity was destroyed more rapidly than the remaining half. These gel membranes were also used for estimating the urea content of the blood samples from the University hospital. The results obtained matched well with those obtained by the usual method employed in the clinical pathology laboratory. The significance of these observations is discussed.  相似文献   

7.
Free as well as alginate immobilized urease was utilized for detection and quantitation of cadmium (Cd2+) in aqueous samples. Urease from the seeds of pumpkin (Cucumis melo), being a vegetable waste, was extracted and purified to apparent homogeneity (Sp. Activity 353 U/mg protein; A280/A260=1.12) by heat treatment at 48+/-0.1 degrees C and gel filtration through Sephadex G-200. The homogeneous enzyme preparation was immobilized in 3.5% alginate leading to 86% immobilization and no leaching of the enzyme was found over a period of 15 days at 4 degrees C. Urease catalyzed urea hydrolysis by both soluble and immobilized enzyme revealed a clear dependence on the concentration of Cd2+. The inhibition caused by Cd2+ was non-competitive (Ki=1.41 x 10(-5) M). The time dependent inhibition both in the presence and in absence of Cd2+ ion revealed a biphasic inhibition in the activity. A Response Surface Methodology (RSM) for the parametric optimization of this process was performed using two-level-two-full factorial (2(2)), central composite design (CCD). The regression coefficient, regression equation and analysis of variance (ANOVA) was obtained using MINITAB 15 software. The predicted values thus obtained were closed to the experimental value indicating suitability of the model. In addition to this 3D response surface plot and isoresponse contour plot were helpful to predict the results by performing only limited set of experiments.  相似文献   

8.
Present report describes a quick and simple test based on enzyme inhibition for the detection of mercury in aqueous medium by urease immobilized in alginate beads. Urease was extracted from the discarded seeds of pumpkin (Cucumis melo) and was purified to apparent homogeneity (5.2-fold) by heat treatment at 48+/-0.1 degrees C and gel filtration through Sephadex G-200. The homogeneous enzyme preparation (Sp activity 353 U/mg protein, A(280)/A(260)=1.12) was immobilized in 3.5% alginate leading to 86% immobilization. Effect of mercuric ion on the activity of soluble as well as immobilized enzyme was investigated. Hg(2+) exhibited a concentration-dependent inhibition both in the presence and absence of the substrate. The alginate immobilized enzyme showed less inhibition. There was no leaching of the enzyme over a period of 15 days at 4 degrees C. The inhibition was non-competitive and the K(i) was found to be 1.26x10(-1)microM. Time-dependent interaction of urease with Hg(2+) exhibited a biphasic inhibition behavior in which approximately half of the initial activity was lost rapidly (within 10 min) and reminder in a slow phase. Binding of Hg(2+) with the enzyme was largely irreversible, as the activity could not be restored by dialysis. The significance of the observations is discussed.  相似文献   

9.
Polyclonal antibody bound Sepharose 4B support has been exploited for the immobilization of bitter gourd peroxidase directly from ammonium sulphate precipitated proteins. Immunoaffinity immobilized bitter gourd peroxidase exhibited high yield of immobilization. IgG-Sepharose 4B bound bitter gourd peroxidase showed a higher stability against heat, chaotropic agents (urea and guanidinium chloride), detergents (cetyl trimethyl ammonium bromide and Surf Excel), proteolytic enzyme (trypsin) and water-miscible organic solvents (propanol, THF and dioxane). The activity of immobilized bitter gourd peroxidase was significantly enhanced in the presence of cetyl trimethyl ammonium bromide and after treatment with trypsin as compared to soluble enzyme.  相似文献   

10.
《Process Biochemistry》2007,42(5):909-912
The effects of aqueous solutions of ethanol, acetonitrile and 1,4-dioxane in the concentration range 10–90% (v/v) on the activity of porcine pepsin were studied. The enzyme retained its activity in aqueous ethanol and aqueous acetonitrile with increasing organic solvent concentration up to 60%, and in aqueous 1,4-dioxane up to 30%, but thereafter a considerable decrease in activity was observed. The changes caused in the catalytic activity by the water-miscible organic solvents may be related to structural changes, which were followed by means of intrinsic fluorescence and circular dichroism spectroscopy measurements.  相似文献   

11.
Polyproline II (PPII) fold, an unusual structural element was detected in the serine protease from Nocardiopsis sp. NCIM 5124 (NprotI) based on far UV circular dichroism spectrum, structural transitions of the enzyme in presence of GdnHCl and a distinct isodichroic point in chemical and thermal denaturation. The functional activity and conformational transitions of the enzyme were studied under various denaturing conditions. Enzymatic activity of NprotI was stable in the vicinity of GdnHCl upto 6.0 M concentration, organic solvents viz. methanol, ethanol, propanol (all 90% v/v), acetonitrile (75% v/v) and proteases such as trypsin, chymotrypsin and proteinase K (NprotI:protease 10:1). NprotI seems to be a kinetically stable protease with a high energy barrier between folded and unfolded states. Also, an enhancement in the activity of the enzyme was observed in 1 M GdnHCl upto 8 h, in organic solvents (75% v/v) for 72 h and in presence of proteolytic enzymes. The polyproline fold remained unaltered or became more prominent under the above mentioned conditions. However, it diminished gradually during thermal denaturation above 60 °C. Thermal transition studies by differential scanning calorimetry (DSC) showed scan rate dependence as well as irreversibility of denaturation, the properties characteristic of kinetically stable proteins. This is the first report of PPII helix being the global conformation of a non structural protein, an alkaline serine protease, from a microbial source, imparting kinetic stability to the protein.  相似文献   

12.
The effects of organic solvents on the stabilities of bovine pancreas trypsin, chymotrypsin, carboxypeptidase A and porcine pancreas lipase were studied. Water-miscible solvents (ethanol, acetonitrile, 1,4-dioxane and dimethyl sulfoxide) and water-immiscible solvents (ethyl acetate and toluene) were used in 100 mM phosphate buffer (pH 7.0) or 100 mM Tris/HCl buffer (pH 7.0) in concentrations of 20–80% (v/v). All hydrolytic enzymes studied were inactivated by mixtures containing dimethyl sulfoxide at higher concentrations. Trypsin and carboxypeptidase A resisted solvent mixtures containing acetonitrile, 1,4-dioxane and ethanol. They preserved more than 80% of their starting activities during 20-min incubations. The activities of lipase and chymotrypsin decreased with increasing concentration of water-miscible polar organic solvents, but at higher concentrations (80%) 70–90% of the activity remained. In mixtures with water-immiscible solvents, the decrease in activity of carboxypeptidase A was pronounced. Trypsin and chymotrypsin underwent practically no loss in activity in the presence of toluene or ethyl acetate. In respect of stability, the polar solvent proved to be more favorable for lipase. These results suggest that the conformational stabilities of hydrolytic enzymes are highly dependent on the solvent-protein interactions and the enzyme structure.  相似文献   

13.
Urethane, a carcinogenic and teratogenic compound, in fermented foods and alcoholic beverages can be eliminated either by direct hydrolysis with urethanase, or by hydrolysis of its precursor molecule urea with acid urease. In the present study, a potent bacterium, which concomitantly produced urethanase and acid urease, was isolated from the decomposed Sargassum species. This bacterial isolate was identified as Chryseobacterium sp. Alg-SU10 by the 16S rRNA gene sequencing approach. The biocatalytic efficacy of the calcium alginate immobilized cells of this bacterium for the hydrolysis of urethane and urea was evaluated by characterizing urethanase and acid urease. The immobilized biocatalyst displayed maximal urethanase and urease activities at pH 5, and retained more than 96% of enzymatic activity at 15% (v/v) ethanol. The values of activation energy, enthalpy and entropy of catalysis were calculated as 43.3?kJ/mol, 40.8?kJ/mol and –116?J/mol/K, respectively, for urethanase and 38.1?kJ/mol, 35.6?kJ/mol and –77.8?J/mol/K, respectively, for acid urease. The overall results indicate the biocatalytic potential of immobilized cells of Chryseobacterium sp. Alg-SU10 for efficient abatement of urethane. This is the first report describing the thermodynamic characteristics of urethanase and acid urease co-produced by Chryseobacterium sp.  相似文献   

14.
The activity of a lipase from a newly isolated Pseudomonas sp. was investigated in the presence of organic solvents and imidazolium chloride‐based ionic liquids (IL) such as BMIM[Cl] and HMIM[Cl]. The lipase activity in the presence of IL was higher compared to that in common organic solvents such as methanol and 2‐propanol. A possible explanation for the enzyme activation might be the structural changes induced in the protein in organic systems. Since IL quench the intensity of fluorescence emission, it was not possible to investigate the major factor that influences the enzyme behavior in these new organic salts. Furthermore, the enzyme exhibited excellent activity in buffer mixtures containing both organic solvent and IL. The stability of the lipase at 50°C was considerably increased in the presence of 20% BMIM[Cl] compared with the untreated lipase in aqueous medium. The light scattering method clearly showed that prevention of aggregation could be the reason for thermal stabilization at 50°C in reactions containing IL. Kinetic analysis of the enzyme in the presence of different concentrations of IL showed that the Km value increased from 0.45 mM in aqueous buffer to 2.4 mM in 50% v/v BMIM[Cl]/buffer. The increase in Km indicates that IL can significantly reduce the binding affinity of the substrate to the enzyme. Also, a linear correlation was observed between the BMIM[Cl] concentration and Vmax of the enzyme. As the concentration of BMIM[Cl] increased from 10 to 50% v/v, the Vmax value increased from 1.8 to 46 μM/min.  相似文献   

15.
The effects of the water-miscible organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile, N,N′-dimethylformamide and tetrahydrofuran) on the stability and catalytic activity of α-chymotrypsin (CT) immobilized on Eupergit CM were studied. Enhanced stabilities and activities were observed both as a consequence of immobilization and the presence of organic solvent, which in combination provide long term (at least 24 h) retention of activity, and up to 50-fold increase in 50% (v/v) methanol in buffer. Low quantities (20%, v/v) of acetonitrile not only prevented CT inactivation by autolysis at 20°C but also induced a significant increase in the activity of both free (six-fold) and immobilized (two-fold) CT.Linus Olofsson and Pernilla Söderberg authors have contributed equally to the work.  相似文献   

16.
The thermotolerant, ethanol producing yeast strain, K. marxianus IMB3 was immobilized in calcium alginate containing magnetically responsive Fe3O4 particles. In these studies the β-galactosidase derived from K. marxianus IMB3 was immobilized onto the Fe3O4 particles prior to inclusion into the alginate matrix. Ethanol production by the immobilized microorganism in the presence of Fe3O4 reached a maximum of 16?g/L on 40?g/L lactose whereas prior immobilization of the enzyme to the particles and inclusion into the alginate matrix increased ethanol production to a maximum concentration of 18 g/L. When Mn2+ was incorporated into fermentations containing the immobilized enzyme in the alginate matrix, ethanol production increased further to a maximum concentration of 20?g/L. In addition, the behaviour of the magnetically responsive biocatalyst containing the co-immobilized enzyme was examined in a batch-fed system in the presence and absence of Mn2+.  相似文献   

17.
Soluble and alginate immobilized urease was utilized for detection and quantitation of mercury in aqueous samples. Urease from the seeds of pumpkin, being a vegetable waste, was extracted and purified to apparent homogeneity (sp. activity 353 U/mg protein; A280/A260 = 1.12) by heat treatment at 48 ± 0.1 °C and gel filtration through Sephadex G-200. Homogeneous enzyme preparation was immobilized in 3.5% alginate leading to 86% immobilization, no leaching of enzyme was found over a period of 15 days at 4 °C. Urease catalyzed urea hydrolysis by soluble and immobilized enzyme revealed a clear dependence on the concentration of Hg2+. Inhibition caused by Hg2+ was non-competitive (Ki = 1.2 × 10−1 μM for soluble and 1.46 × 10−1 μM for alginate immobilized urease.). Time-dependent inhibition both in presence and in absence of Hg2+ ion revealed a biphasic inhibition in activity. For optimization of this process response surface methodology (RSM) was utilized where two-level-two-full factorial (22) central composite design (CCD) has been employed. The regression equation and analysis of variance (ANOVA) were obtained using MINITAB® 15 software. Predicted values thus obtained were closed to experimental value indicating suitability of the model. 3D response surface plot, iso-response contour plot and process optimization curve were helpful to predict the results by performing only limited set of experiments.  相似文献   

18.
Jack bean urease has been immobilized on arylamine glass beads (200–400 mesh size, 75–100 Å pore size) and its properties compared with soluble enzyme. The binding of urease was 13.71 mg per gram beads. The Km for soluble and immobilized urease for urea was 4.20 mM and 8.81 mM, respectively. Vmax values of urease decreased from 200 to 43.48 μmol of ammonia formed per min per mg protein at 37°C on immobilization. Both pH and buffer ions influenced the activities of soluble as well as immobilized urease. Soluble urease exhibited pH optima at 5.5 and 8.0. However, immobilized urease showed one additional pH optimum at 6.5. In comparison to phosphate buffer, citrate buffer was inhibitory to urease activity. Immobilization of urease on arylamine glass beads resulted in improved thermal, storage and operational stability. Because of inertness of support and stability of immobilized urease, the preparation can find applications in ‘artificial kidney’ and urea estimation in biological fluids viz., blood, milk etc.  相似文献   

19.
Aminopeptidase B, an arginyl aminopeptidase, was purified from goat brain with a purification factor of ~280 and a yield of 2.7%. It was entrapped in calcium alginate together with bovine serum albumin. The optimal conditions for immobilization for maximum activity yield were 1% CaCl2 and 2.5% alginate. The immobilized enzyme retained ~62% of its initial activity and could be used for five successive batch reactions with retention of 30% of the initial activity. The pH and temperature optima of the free and immobilized enzyme were pH 7.4, 45°C and pH 7.8, 50°C respectively, while the pH and thermal stability as well as the stability of the enzyme in organic solvents were improved significantly after entrapment. The Km value for the immobilized enzyme was about twofold higher than that of the soluble enzyme. Because of this increased stability, the immobilized enzyme may be useful in the meat processing industry.  相似文献   

20.
Since it has previously been demonstrated that ethanol production by the thermotolerant yeast strain, Kluyveromyces marxianus IMB3 is more efficient in calcium alginate-based immobilization systems during growth on lactose-containing media, it was decided to examine the separate effects of soluble alginate and free calcium on the β-galactosidase activity produced by that organism. It was found that the presence of Ca2+ significantly increased the thermal stability of the activity at 45?°C, although the pH?and temperature optima remained the same in the presence and absence of that cation. It was also found that the presence of 2% (w/v) sodium alginate (soluble) had a very limited positive effect on the thermal stability of the enzyme at 45?°C, although it was found that activity was very significantly stimulated at that temperature. The activity was found to have an enhanced thermal stability at 30?°C in the presence of sodium alginate. The presence of sodium alginate in assay mixtures had no significant effect on the Km of the activity for the substrate o-nitrophenyl-β-D-galactoside. The results observed in the presence of either free calcium or soluble alginate may at least partially explain enhanced ethanol production by this microorganism in alginate-based immobilization systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号