首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main methods used for large-scale mapping of the human and other genomes are reviewed. These methods comprise two procedures of random mapping/sequencing and an approach using linking and jumping libraries. Importantly, no method used up to now has proved efficient in comparative genome analysis. A new method is presented basing on slalom libraries. These libraries provide 10-100 times higher efficiency and may be used for mapping and sequencing whole genomes by small research groups.  相似文献   

2.
Integration of molecular and cytegenetic levels of investigation results in complex understanding of structural and functional genome organization. Gridded libraries of large-insert genomic clones represent a powerful tool of the genome analysis. Their utilization provides coordination of data on molecular organization of nucleic acids with cytogenetic data on the chromosome structure. These libraries played an important role in sequencing of genomes of human, mouse, and other organisms as an instrument linking molecular biological and cytogenetic data via construction of contigs and their localization on the chromosomes. They also enabled analysis of orthology between the mammalian genomes. The existing avian libraries fit molecular cytogenetic analysis of the class Aves genome, and can be successfully used for the isolation and characterization of large genomic fragments. This provides utilization of these libraries not only for the chromosome mapping, but also for positional cloning and search for candidate genes for quantitative traits.  相似文献   

3.
Second generation sequencing has been widely used to sequence whole genomes. Though various paired-end sequencing methods have been developed to construct the long scaffold from contigs derived from shotgun sequencing, the classical paired-end sequencing of the Bacteria Artificial Chromosome (BAC) or fosmid libraries by the Sanger method still plays an important role in genome assembly. However, sequencing libraries with the Sanger method is expensive and time-consuming. Here we report a new strategy to sequence the paired-ends of genomic libraries with parallel pyrosequencing, using a Chinese amphioxus (Branchiostoma belcheri) BAC library as an example. In total, approximately 12,670 non-redundant paired-end sequences were generated. Mapping them to the primary scaffolds of Chinese amphioxus, we obtained 413 ultra-scaffolds from 1,182 primary scaffolds, and the N50 scaffold length was increased approximately 55 kb, which is about a 10% improvement. We provide a universal and cost-effective method for sequencing the ultra-long paired-ends of genomic libraries. This method can be very easily implemented in other second generation sequencing platforms.  相似文献   

4.
Mito-metagenomics (MMG) is becoming an alternative to amplicon metabarcoding for the assessment of biodiversity in complex biological samples using high-throughput sequencing. Whereas MMG overcomes the biases introduced by the PCR step in the generation of amplicons, it is not yet a technique free of shortcomings. First, as the reads are obtained from shotgun sequencing, a very low proportion of reads map into the mitogenomes, so a high sequencing effort is needed. Second, as the number of mitogenomes per cell can vary among species, the relative species abundance (RSA) in a mixture could be wrongly estimated. Here, we challenge the MMG method to estimate the RSA using artificial libraries of 17 insect species whose complete genomes are available on public repositories. With fresh specimens of these species, we created single-species libraries to calibrate the bioinformatic pipeline and mixed-species libraries to estimate the RSA. Our results showed that the MMG approach confidently recovers the species list of the mixtures, even when they contain congeneric species. The method was also able to estimate the abundance of a species across different samples (within-species estimation) but failed to estimate the RSA within a single sample (across-species estimation) unless a correction factor accounting for the variable number of mitogenomes per cell was used. To estimate this correction factor, we used the proportion of reads mapping into mitogenomes in the single-species libraries and the lengths of the whole genomes and mitogenomes.  相似文献   

5.
Integration of molecular and cytegenetic levels of investigation results in complex understanding of structural and functional genome organization. Gridded libraries of large-insert genomic clones represent a powerful tool of the genome analysis. Their utilization provides coordination of data on molecular organization of nucleic acids with cytogenetic data on the chromosome structure. These libraries played an important role in sequencing of genomes of human, mouse, and other organisms as an instrument linking molecular biological and cytogenetic data via construction of contigs and their localization on the chromosomes. They also enabled analysis of orthology between the mammalian genomes. The existing avian libraries fit molecular cytogenetic analysis of the class Aves genome, and can be successfully used for the isolation and characterization of large genomic fragments. This provides utilization of these libraries not only for the chromosome mapping, but also for positional cloning and search for candidate genes for quantitative traits.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 581–589.Original Russian Text Copyright © 2005 by Sazanov, Romanov, Smirnov.  相似文献   

6.
Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However; for some organisms, it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.  相似文献   

7.
To construct large-insert libraries for the sequencing, mapping, and functional studies of complex genomes, we have constructed a new modular bacterial artificial chromosome (BAC) vector, pBACe3.6 (GenBank Accession No. U80929). This vector contains multiple cloning sites located within the sacB gene, allowing positive selection for recombinant clones on sucrose-containing medium. A recognition site for the PI-SceI nuclease has also been included, which permits linearization of recombinant DNA irrespective of the characteristics of the insert sequences. An attTn7 sequence present in pBACe3.6 permits retrofitting of BAC clones by Tn7-mediated insertion of desirable sequence elements into the vector portion. The ability to retrofit BAC clones will be useful for functional analysis of genes carried on the cloned inserts. The pBACe3.6 vector has been used for the construction of many genomic libraries currently serving as resources for large-scale mapping and sequencing.  相似文献   

8.
A large amount of repetitive DNA complicates the assembly of the maize genome sequence. Genome-filtration techniques, such as methylation-filtration and high-CoT separation, enrich gene sequences in genomic libraries. These methods may provide a low-cost alternative to whole-genome sequencing for maize and other complex genomes.  相似文献   

9.
A new approach to genome mapping and sequencing: slalom libraries   总被引:2,自引:2,他引:0       下载免费PDF全文
We describe here an efficient strategy for simultaneous genome mapping and sequencing. The approach is based on physically oriented, overlapping restriction fragment libraries called slalom libraries. Slalom libraries combine features of general genomic, jumping and linking libraries. Slalom libraries can be adapted to different applications and two main types of slalom libraries are described in detail. This approach was used to map and sequence (with ~46% coverage) two human P1-derived artificial chromosome (PAC) clones, each of ~100 kb. This model experiment demonstrates the feasibility of the approach and shows that the efficiency (cost-effectiveness and speed) of existing mapping/sequencing methods could be improved at least 5–10-fold. Furthermore, since the efficiency of contig assembly in the slalom approach is virtually independent of length of sequence reads, even short sequences produced by rapid, high throughput sequencing techniques would suffice to complete a physical map and a sequence scan of a small genome.  相似文献   

10.
11.
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high‐throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping‐by‐sequencing (GBS) methods include over a dozen reduced‐representation sequencing (RRS) approaches and at least four whole‐genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best‐suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker‐assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small‐ to moderate‐sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost‐effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost‐effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.  相似文献   

12.
13.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   

14.

Background  

The degree to which conventional DNA sequencing techniques will be successful for highly repetitive genomes is unclear. Investigators are therefore considering various filtering methods to select against high-copy sequence in DNA clone libraries. The standard model for random sequencing, Lander-Waterman theory, does not account for two important issues in such libraries, discontinuities and position-based sampling biases (the so-called "edge effect"). We report an extension of the theory for analyzing such configurations.  相似文献   

15.
A method is outlined for large-scale isolation and characterization of microsatellite sequences from complex plant genomes. The method presented here differs from the previously published procedures in the use of randomly sheared (nebulized) genomic DNA for adapter-ligation, rigorous removal of biotinylated oligos, and high-density colony blots for constructing enriched libraries. Using this method we have constructed cotton microsatellite enriched libraries with over 20% (high stringency screening) or 75% (by random sequencing). Thus far we have identified and sequenced over 500 cotton microsatellites using this procedure. The procedure can be used to generate enriched SSR libraries from genomic DNA in about one week. High throughput screening and automated DNA sequencing can be accomplished in less than one month.  相似文献   

16.
Current efforts to recover the Neandertal and mammoth genomes by 454 DNA sequencing demonstrate the sensitivity of this technology. However, routine 454 sequencing applications still require microgram quantities of initial material. This is due to a lack of effective methods for quantifying 454 sequencing libraries, necessitating expensive and labour-intensive procedures when sequencing ancient DNA and other poor DNA samples. Here we report a 454 sequencing library quantification method based on quantitative PCR that effectively eliminates these limitations. We estimated both the molecule numbers and the fragment size distributions in sequencing libraries derived from Neandertal DNA extracts, SAGE ditags and bonobo genomic DNA, obtaining optimal sequencing yields without performing any titration runs. Using this method, 454 sequencing can routinely be performed from as little as 50 pg of initial material without titration runs, thereby drastically reducing costs while increasing the scope of sample throughput and protocol development on the 454 platform. The method should also apply to Illumina/Solexa and ABI/SOLiD sequencing, and should therefore help to widen the accessibility of all three platforms.  相似文献   

17.
We have developed a robust RNA sequencing method for generating complete de novo assemblies with intra-host variant calls of Lassa and Ebola virus genomes in clinical and biological samples. Our method uses targeted RNase H-based digestion to remove contaminating poly(rA) carrier and ribosomal RNA. This depletion step improves both the quality of data and quantity of informative reads in unbiased total RNA sequencing libraries. We have also developed a hybrid-selection protocol to further enrich the viral content of sequencing libraries. These protocols have enabled rapid deep sequencing of both Lassa and Ebola virus and are broadly applicable to other viral genomics studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0519-7) contains supplementary material, which is available to authorized users.  相似文献   

18.
Recent applications of culture-independent, molecular methods have revealed unexpectedly high diversity in a variety of functional and phylogenetic groups of microorganisms in the ocean. However, none of the existing research tools are free from significant limitations, such as PCR and cloning biases, low phylogenetic resolution and others. Here, we employed novel, single-cell sequencing techniques to assess the composition of small (<10 μm diameter), heterotrophic protists from the Gulf of Maine. Single cells were isolated by flow cytometry, their genomes amplified, and 18S rRNA marker genes were amplified and sequenced. We compared the results to traditional environmental PCR cloning of sorted cells. The diversity of heterotrophic protists was significantly higher in the library of single amplified genomes (SAGs) than in environmental PCR clone libraries of the 18S rRNA gene, obtained from the same coastal sample. Libraries of SAGs, but not clones contained several recently discovered, uncultured groups, including picobiliphytes and novel marine stramenopiles. Clone, but not SAG, libraries contained several large clusters of identical and nearly identical sequences of Dinophyceae, Cercozoa and Stramenopiles. Similar results were obtained using two alternative primer sets, suggesting that PCR biases may not be the only explanation for the observed patterns. Instead, differences in the number of 18S rRNA gene copies among the various protist taxa probably had a significant role in determining the PCR clone composition. These results show that single-cell sequencing has the potential to more accurately assess protistan community composition than previously established methods. In addition, the creation of SAG libraries opens opportunities for the analysis of multiple genes or entire genomes of the uncultured protist groups.  相似文献   

19.
The Rosaceae contains many economically important crop species, but their genomes are not well characterized, and comparative genetic mapping lags well behind that of other families. To facilitate genome comparisons and gene discovery in the Rosaceae, we have begun the development of genomic resources for peach as the model genome for this family. First, we developed a simplified, cost-effective method for constructing BAC libraries, particularly appropriate for plant species of relatively minor economic importance. Second, we used the library to investigate the abundance and local distribution of simple sequence repeats (SSRs) in peach. Our results indicate that microsatellite loci are locally much more highly abundant than previously estimated, and BAC sequencing results suggest that microsatellite repeats are not randomly distributed within gene-containing regions of the peach genome. This makes it relatively easy to identify SSRs in peach by hybridization to BAC clones, and even by random sequencing of BAC clones, not known a priori to contain SSRs.  相似文献   

20.
High‐density genome‐wide sequencing increases the likelihood of discovering genes of major effect and genomic structural variation in organisms. While there is an increasing availability of reference genomes across broad taxa, the greatest limitation to whole‐genome sequencing of multiple individuals continues to be the costs associated with sequencing. To alleviate excessive costs, pooling multiple individuals with similar phenotypes and sequencing the homogenized DNA (Pool‐Seq) can achieve high genome coverage, but at the loss of individual genotypes. Although Pool‐Seq has been an effective method for association mapping in model organisms, it has not been frequently utilized in natural populations. To extend bioinformatic tools for rapid implementation of Pool‐Seq data in nonmodel organisms, we developed a pipeline called PoolParty and illustrate its effectiveness in genetic association mapping. Alignment expectations based on five pooled Chinook salmon (Oncorhynchus tshawytscha) libraries showed that approximately 48% genome coverage per library could be achieved with reasonable sequencing effort. We additionally examined male and female O. tshawytscha libraries to illustrate how Pool‐Seq techniques can successfully map known genes associated with functional differences among sexes such as growth hormone 2. Finally, we compared pools of individuals of different spawning ages for each sex to discover novel genes involved with age at maturity in O. tshawytscha such as opsin4 and transmembrane protein19. While not appropriate for every system, Pool‐Seq data processed by the PoolParty pipeline is a practical method for identifying genes of major effect in nonmodel organisms when high genome coverage is necessary and cost is a limiting factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号