首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
Molecular organization of the presynaptic active zone   总被引:1,自引:0,他引:1  
The exocytosis of neurotransmitter-filled synaptic vesicles is under tight temporal and spatial control in presynaptic nerve terminals. The fusion of synaptic vesicles is restricted to a specialized area of the presynaptic plasma membrane: the active zone. The protein network that constitutes the cytomatrix at the active zone (CAZ) is involved in the organization of docking and priming of synaptic vesicles and in mediating use-dependent changes in release during short-term and long-term synaptic plasticity. To date, five protein families whose members are highly enriched at active zones (Munc13s, RIMs, ELKS proteins, Piccolo and Bassoon, and the liprins-α), have been characterized. These multidomain proteins are instrumental for the diverse functions performed by the presynaptic active zone.In our laboratories, work on the molecular organization of the active zone is supported by the Deutsche Forschungsgemeinschaft (Emmy Noether Fellowship, SFB645/A4 to S.S., SFB426/A1 to E.D.G.), the European Commission (SynScaff Consortium), the Land Sachsen-Anhalt (LSA-N2), the Fonds der Chemischen Industrie, and a Max Planck Research Award by the Max Planck Society, the Alexander von Humboldt Society, and local funding (BONFOR to S.S.).  相似文献   

4.
Signal transduction by auditory and vestibular hair cells involves an impressive ensemble of finely tuned control mechanisms, strictly dependent on the local intracellular Ca(2+) concentration ([Ca(2+)](i)). The study of Ca(2+) dynamics in hair cells typically combines Ca(2+)-sensitive fluorescent indicators (dyes), patch clamp and optical microscopy to produce images of the patterns of fluorescence of a Ca(2+) indicator following various stimulation protocols. Here we describe a novel method that combines electrophysiological recordings, fluorescence imaging and numerical simulations to effectively deconvolve Ca(2+) signals within cytoplasmic microdomains that would otherwise remain inaccessible to direct observation. The method relies on the comparison of experimental data with virtual signals derived from a Monte Carlo reaction-diffusion model based on a realistic reconstruction of the relevant cell boundaries in three dimensions. The model comprises Ca(2+) entry at individual presynaptic active zones followed by diffusion, buffering, extrusion and release of Ca(2+). Our results indicate that changes of the hair cell [Ca(2+)](i) during synaptic transmission are primarily controlled by the Ca(2+) endogenous buffers both at short (<1mu) and at long (tens of microns) distances from the active zones. We provide quantitative estimates of concentration and kinetics of the hair cell endogenous Ca(2+) buffers and Ca(2+)-ATPases. We finally show that experimental fluorescence data collected during Ca(2+) influx are not interpreted correctly if the [Ca(2+)](i) is estimated by assuming that Ca(2+) equilibrates instantly with its reactants. In our opinion, this approach is of potentially general interest as it can be easily adapted to the study of Ca(2+) dynamics in diverse biological systems.  相似文献   

5.
The axoplasm at the presynaptic active zone of excitatory synapses between parallel fibers and Purkinje cell spines contains a meshwork of distinct filaments intermingled with synaptic vesicles, seen most clearly after the rapid freezing, freeze-etch technique of tissue preparation. One set of filaments extends radially from synaptic vesicles and intersects similar filaments associated with vesicles as well as larger filaments arising from the presynaptic membrane. The small, vesicle-associated filaments appear to link synaptic vesicles to one another and to enmesh them in the vicinity of the synaptic junction. The vesicle-associated filaments could be synapsin I because they have the same molecular dimensions and are distributed in the same pattern as synapsin I immunoreactivity.  相似文献   

6.
The amyloid precursor protein (APP) and its mammalian homologs, APLP1, APLP2, have been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a cell surface‐localized pool. In the brain, all APPs are restricted to neurons; however, their precise localization at the plasma membrane remained enigmatic. Employing a variety of subcellular fractionation steps, we isolated two synaptic vesicle (SV) pools from rat and mouse brain, a pool consisting of synaptic vesicles only and a pool comprising SV docked to the presynaptic plasma membrane. Immunopurification of these two pools using a monoclonal antibody directed against the 12 membrane span synaptic vesicle protein2 (SV2) demonstrated unambiguously that APP, APLP1 and APLP2 are constituents of the active zone of murine brain but essentially absent from free synaptic vesicles. The specificity of immunodetection was confirmed by analyzing the respective knock‐out animals. The fractionation experiments further revealed that APP is accumulated in the fraction containing docked synaptic vesicles. These data present novel insights into the subsynaptic localization of APPs and are a prerequisite for unraveling the physiological role of all mature APP proteins in synaptic physiology.

  相似文献   


7.
The active zone is a specialized region of the presynaptic plasma membrane where synaptic vesicles dock and fuse. In this study, we have investigated the cellular mechanism underlying the transport and recruitment of the active zone protein Piccolo into nascent synapses. Our results show that Piccolo is transported to nascent synapses on an approximately 80 nm dense core granulated vesicle together with other constituents of the active zone, including Bassoon, Syntaxin, SNAP-25, and N-cadherin, as well as chromogranin B. Components of synaptic vesicles, such as VAMP 2/synaptobrevin II, synaptophysin, synaptotagmin, or proteins of the perisynaptic plasma membrane such as GABA transporter 1 (GAT1), were not present. These studies demonstrate that the presynaptic active zone is formed in part by the fusion of an active zone precursor vesicle with the presynaptic plasma membrane.  相似文献   

8.
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   

9.
Schizophrenia is a highly heritable neuropsychiatric disorder affecting ~1% of the world's population. Linkage and association studies have identified multiple candidate schizophrenia susceptibility genes whose functions converge on the glutamatergic neurotransmitter system. One such susceptibility gene encoding D-amino acid oxidase (DAO), an enzyme that metabolizes the NMDA receptor (NMDAR) co-agonist D-serine, has the potential to modulate NMDAR function in the context of schizophrenia. To further investigate its cellular regulation, we sought to identify DAO-interacting proteins that participate in its functional regulation in rat cerebellum, where DAO expression is especially high. Immunoprecipitation with DAO-specific antibodies and subsequent mass spectrometric analysis of co-precipitated proteins yielded 24 putative DAO-interacting proteins. The most robust interactions occurred with known components of the presynaptic active zone, such as bassoon (BSN) and piccolo (PCLO). The interaction of DAO with BSN was confirmed through co-immunoprecipitation assays using DAO- and BSN-specific antibodies. Moreover, DAO and BSN colocalized with one another in cultured cerebellar granule cells and in synaptic junction membrane protein fractions derived from rat cerebellum. The functional consequences of this interaction were studied through enzyme assay experiments, where DAO enzymatic activity was significantly inhibited as a result of its interaction with BSN. Taking these results together, we hypothesize that synaptic D-serine concentrations may be under tight regulation by a BSN-DAO complex. We therefore predict that this mechanism plays a role in the modulation of glutamatergic signaling through NMDARs. It also furthers our understanding of the biology underlying this potential therapeutic entry point for schizophrenia and other psychiatric disorders.  相似文献   

10.
F Jaramillo  A J Hudspeth 《Neuron》1991,7(3):409-420
In order to understand how the hair cell's mechanoelectrical transduction channels are gated during mechanical stimulation, it is essential to determine their location with respect to the hair bundle's constituent stereocilia. We localized the transduction channels by focally blocking receptor currents with iontophoretically ejected gentamicin, an aminoglycoside antibiotic that acts as a reversible channel blocker. The drug was most effective when directed at the top of a hair bundle, whereas application at the bundle's bottom or at the cuticular plate had little or no effect. Computer simulations of blocking agreed with experimental data only when the transduction channels were hypothesized to occur near the bundle's top. These results confirm that the hair cell's transduction channels are located near the stereociliary tips.  相似文献   

11.
In the fly's visual system, the morphology of cells and the number of synapses change during the day. In the present study we show that in the first optic neuropil (lamina) of Drosophila melanogaster, a presynaptic active zone protein Bruchpilot (BRP) exhibits a circadian rhythm in abundance. In day/night (or light/dark, LD) conditions the level of BRP increases two times, in the morning and in the evening. The same pattern of changes in the BRP level was detected in whole brain homogenates, thus indicating that the majority of synapses in the brain peaks twice during the day. However, these two peaks in BRP abundance, measured as the fluorescence intensity of immunolabeling, seem to be regulated differently. The peak in the morning is predominantly regulated by light and involves the transduction pathway in the retina photoreceptors. This peak is present neither in wild‐type Canton‐S flies in constant darkness (DD), nor in norpA7 phototransduction mutant in LD. However, it also depends on the clock gene per, because it is abolished in the per0 arrhythmic mutant. In turn, the peak of BRP in the evening is endogenously regulated by an input from the pacemaker located in the brain. This peak is present in Canton‐S flies in DD, as well as in the norpA7 mutant in LD, but is absent in per01, tim,01 and cry01 mutants in LD. In addition both peaks seem to depend on clock gene‐expressing photoreceptors and glial cells of the visual system. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

12.
Activity-dependent changes in ionotropic glutamate receptors at the postsynaptic membrane are well established and this regulation plays a central role in the expression of synaptic plasticity. However, very little is known about the distributions and regulation of ionotropic receptors at presynaptic sites. To determine if presynaptic receptors are subject to similar regulatory processes we investigated the localisation and modulation of AMPA (GluR1, GluR2, GluR3) and kainate (GluR6/7, KA2) receptor subunits by ultrasynaptic separation and immunoblot analysis of rat brain synaptosomes. All of the subunits were enriched in the postsynaptic fraction but were also present in the presynaptic and non-synaptic synaptosome fractions. AMPA stimulation resulted in a marked decrease in postsynaptic GluR2 and GluR3 subunits, but an increase in GluR6/7. Conversely, GluR2 and GluR3 increased in the presynaptic fraction whereas GluR6/7 decreased. There were no significant changes in any of the compartments for GluR1. NMDA treatment decreased postsynaptic GluR1, GluR2 and GluR6/7 but increased presynaptic levels of these subunits. NMDA treatment did not evoke changes in GluR3 localisation. Our results demonstrate that presynaptic and postsynaptic subunits are regulated in opposite directions by AMPA and NMDA stimulation.  相似文献   

13.
Rim1, a brain-specific Rab3a-binding protein, localizes to the presynaptic cytomatrix and plays an important role in synaptic transmission and synaptic plasticity. Rim2, a homologous protein, is more ubiquitously expressed and is found in neuroendocrine cells as well as in brain. Both Rim1 and Rim2 contain multiple domains, including an N-terminal zinc finger, which in Rim1 strongly enhances secretion in chromaffin and PC12 cells. The yeast two-hybrid technique identified 14-3-3 proteins as ligands of the N-terminal domain. In vitro protein binding experiments confirmed a high-affinity interaction between the N terminus of Rim1 and 14-3-3. The N-terminal domain of Rim2 also bound 14-3-3. The binding domains were localized to a short segment just C-terminal to the zinc finger. 14-3-3 proteins bind to specific phosphoserine residues. Alkaline phosphatase treatment of N-terminal domains of Rim1 and Rim2 almost completely inhibited the binding of 14-3-3. Two serine residues in Rim1 (Ser-241 and Ser-287) and one serine residue in Rim2 (Ser-335) were required for 14-3-3 binding. Incubation with Ca2+/calmodulin-dependent protein kinase II greatly stimulated the interaction of recombinant N-terminal Rim but not the S241/287A mutant with 14-3-3, again indicating the importance of the phosphorylation of these residues for the binding. Rabphilin3, another Rab3a effector, also bound 14-3-3. Serine-to-alanine mutations identified Ser-274 as the likely phosphorylated residue to which 14-3-3 binds. Because the phosphorylation of this residue had been shown to be stimulated upon depolarization in brain slices, the interaction of 14-3-3 with Rabphilin3 may be important in the dynamic function of central nervous system neurons.  相似文献   

14.
Glucocorticoids deplete the AtT-20 mouse pituitary tumor cell of its glucocorticoid receptors. Once placed into steroid-free medium, however, these 'receptor-deplete' cells gradually regain their ability to bind glucocorticoids displaceably. The goal of this paper is to determine whether replete binding-species is indeed a glucocorticoid receptor, and whether any precursor or modified forms are seen during repletion. Once depleted, cells take nearly 3-4 days to replete their full complement of cytosolic glucocorticoid-binding species. Scatchard analysis revealed only one binding site, of which the affinity for dexamethasone was identical to that of the native receptor. The steroid-binding specificity of the 'replete' binding species was exactly the same as that of the original receptor. The molecular size and surface charge density of the glucocorticoid-binding species obtained throughout the process of repletion were identical to those of the original receptor. Finally, studies in which replete cells were exposed to glucocorticoid agonists showed that the cell was able to decrease its production of ACTH, indicating that the regenerated binding species was able to function as a biologically active glucocorticoid receptor. We conclude that the replete species is a glucocorticoid receptor identical to the original, and that probably no precursor or modified forms of the repleting receptor exist.  相似文献   

15.
双重荧光染色监测听毛细胞游离钙   总被引:3,自引:0,他引:3  
Calcium distribution and mobilization during mechanical stimulation in outer hair cells of the guinea pig were monitored using laser scanning confocal microscopy and co-loaded fluo-3 and fura-red fluorescent probes. Spatial calcium gradients were revealed among various subcellular areas. The ratios of the fluorescence intensity of fluo-3 and fura-red were 1.71 +/- 0.85, 1.61 +/- 0.75, 1.47 +/- 0.65 and 1.39 +/- 0.66 for the cytoplasm, the cytoplasmic membrane, the cuticular plate and the nucleus respectively, indicating that free calcium ion concentrations are the highest in the cytoplasm and the lowest in the nucleus. While the calcium concentration remained relatively constant under resting conditions, it increased during mechanical stimulation. The results show that confocal ratio imaging of fluo-3 and fura-red enables us to determine more accurately the subcellular calcium distribution and that the calcium ions make a contribution to the mechanic-electrical transduction in hair cells.  相似文献   

16.
17.
The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.  相似文献   

18.
In the metabolism of pulmonary surfactant, the ATP-binding cassette sub-family A member 3 (ABCA3) is a crucial protein in the formation of the storage compartment for surfactant, the lamellar body (LB), and the transport of phospholipids in it. Mutations in ABCA3 not only disturb surfactant metabolism but also cause chronic interstitial lung diseases. Assays for ABCA3 transport function are needed to investigate pathophysiology of the mutations and treatment options for the patients.We metabolically labeled choline (Cho) head phospholipids with the Cho analogue, propargyl-Cho. The universal incorporation of propargyl-Cho was confirmed by mass spectrometry and labeled lipids were visualized in confocal microscopy by click reaction with an azide fluorophore. After pulse-labeling propargyl-Cho labeled lipids accumulated in ABCA3+ vesicles in a time and concentration dependent manner. When treated with the choline kinase inhibitor MN58b during the first 12 h, the lipids intensity inside ABCA3+ vesicles decreased, whereas intensity was unchanged when treated after 12 h. Miltefosine, a substrate of ABCA3, decreased the incorporation of labeled lipids in ABCA3+ vesicles at all time points. The lipids intensity inside the mutated (p.N568D or p.L1580P) ABCA3+ vesicles was decreased compared to wild type, while the intensity outside of vesicles showed no difference.Propargyl-Cho can metabolically pulse-label Cho phospholipids. Visualization and quantification of fluorescence intensity of the labeled lipids inside ABCA3+ vesicles at equilibrium can specifically assess the transport function of ABCA3.  相似文献   

19.
The active zone is a unique specialization of the presynaptic membrane and is believed to be the site of transmitter release. The formation of the active zone and the relationship of this process to transmitter release were studied at reinnervated neuromuscular junctions in the frog. At different times after a nerve crush, the cutaneous pectoris muscles were examined with intracellular recording recording and freeze-fracture electron microscopy. The P face of a normal active zone typically consists of two double rows of particles lined up in a continuous segment located opposite a junctional fold. In the initial stage of reinnervation, clusters of large intramembrane particles surrounding membrane elevations appeared on the P face of nerve terminals. Like normal active zones, these clusters were aligned with junctional folds. Vesicle openings, which indicate transmitter release, were seen at these primitive active zones, even though intramembrane particles were not yet organized into the normal pattern of two double rows. The length of active zones at this stage was only approximately 15% of normal. During the secondary stage, every junction was reinnervated and most active zones had begun to organize into the normal pattern with normal orientation. Unlike normal, there were often two or more discontinuous short segments of active zone aligned with the same junctional fold. The total length of active zone per junctional fold increased to one-third of normal, mainly because of the greater number of segments. In the third stage, the number of active zone segments per junctional fold showed almost no change when compared with the secondary stage. However, individual segments elongated and increased the total length of all active zone segments per junctional fold to about two-thirds of the normal length. The dynamic process culminated in the final stage, during which elongating active zones appeared to join together and the number of active zone segments per junctional fold decreased to normal. Thus, in most regions, regeneration of the active zones was complete. These results suggest that the normal organization of two double rows is not necessary for the active zone to be functional. Furthermore, localization of regenerating active zones is related to junctional folds and/or their associated structures.  相似文献   

20.
The presynaptic proteome controls neurotransmitter release and the short and long term structural and functional dynamics of the nerve terminal. Using a monoclonal antibody against synaptic vesicle protein 2 we immunopurified a presynaptic compartment containing the active zone with synaptic vesicles docked to the presynaptic plasma membrane as well as elements of the presynaptic cytomatrix. Individual protein bands separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis were subjected to nanoscale-liquid chromatography electrospray ionization-tandem mass spectrometry. Combining this method with 2-dimensional benzyldimethyl- n -hexadecylammonium chloride/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight and immunodetection we identified 240 proteins comprising synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular signal transduction, a large variety of adhesion molecules and proteins potentially involved in regulating the functional and structural dynamics of the pre-synapse. Four maxi-channels, three isoforms of voltage-dependent anion channels and the tweety homolog 1 were co-isolated with the docked synaptic vesicles. As revealed by in situ hybridization, tweety homolog 1 reveals a distinct expression pattern in the rodent brain. Our results add novel information to the proteome of the presynaptic active zone and suggest that in particular proteins potentially involved in the short and long term structural modulation of the mature presynaptic compartment deserve further detailed analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号