首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid-state NMR (SSNMR) is an attractive technique for studying large membrane proteins in membrane-mimetic environments. However, SSNMR experiments often suffer from low efficiency, due to the inherent low sensitivity and the long recycle delays needed to recover the magnetization. Here we demonstrate that the incorporation of a small amount of a Gd3+-chelated lipid, Gd3+-DMPE-DTPA, into proteoliposomes greatly shortens the spin–lattice relaxation time (1H-T 1) of lipid-reconstituted membrane proteins and accelerates the data collection. This effect has been evaluated on a 30 kDa, seven-transmembrane protein, Leptosphaeria rhodopsin. With the Gd3+-chelated lipid, we can perform 2D SSNMR experiments 3 times faster than by diamagnetic control. By combining this paramagnetic relaxation-assisted data collection with non-uniform sampling, the 3D experimental times are reduced eightfold with respect to traditional 3D experiments on diamagnetic samples. A comparison between the paramagnetic relaxation enhancement (PRE) effects of Cu2+- and Gd3+-chelated lipids indicates the much higher relaxivity of the latter. Hence, a tenfold lower concentration is needed for Gd3+-chelated lipids to achieve comparable PRE effects to Cu2+-chelated lipids. In addition, Gd3+-chelated lipids neither alter the protein structures nor induce significant line-width broadening of the protein signals. This work is expected to be beneficial for structural and dynamic studies of large membrane proteins by SSNMR.  相似文献   

2.
A considerable limitation of NMR spectroscopy is its inherent low sensitivity. Approximately 90 % of the measuring time is used by the spin system to return to its Boltzmann equilibrium after excitation, which is determined by 1H-T1 in cross-polarized solid-state NMR experiments. It has been shown that sample doping by paramagnetic relaxation agents such as Cu2+-EDTA accelerates this process considerably resulting in enhanced sensitivity. Here, we extend this concept to Gd3+-complexes. Their effect on 1H-T1 has been assessed on the membrane protein proteorhodopsin, a 7TM light-driven proton pump. A comparison between Gd3+-DOTA, Gd3+-TTAHA, covalently attached Cu2+-EDTA-tags and Cu2+-EDTA reveals a 3.2-, 2.6-, 2.4- and 2-fold improved signal-to-noise ratio per unit time due to longitudinal paramagnetic relaxation enhancement. Furthermore, Gd3+-DOTA shows a remarkably high relaxivity, which is 77-times higher than that of Cu2+-EDTA. Therefore, an order of magnitude lower dopant concentration can be used. In addition, no line-broadening effects or peak shifts have been observed on proteorhodopsin in the presence of Gd3+-DOTA. These favourable properties make it very useful for solid-state NMR experiments on membrane proteins.  相似文献   

3.
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.  相似文献   

4.
Magic-angle spinning (MAS) is mandatory in solid-state NMR experiments to achieve resolved spectra. In rare cases, instabilities in the rotation or damage of either the rotor or the rotor cap can lead to a so called “rotor crash” involving a disintegration of the sample container and possibly the release of an aerosol or of dust. We present a modified design of a 3.2 mm probe with a confining chamber which in case of a rotor crash prevents the release of aerosols and possibly hazardous materials. 1D and 2D NMR experiments show that such a hazardous material-confining MAS probe (“CONFINE-MAS” probe) has a similar sensitivity compared to a standard probe and performs equally well in terms of spinning stability. We illustrate the CONFINE-MAS probe properties and performance by application to a fungal amyloid.  相似文献   

5.
The 1H dipolar network, which is the major obstacle for applying proton detection in the solid-state, can be reduced by deuteration, employing the RAP (Reduced Adjoining Protonation) labeling scheme, which yields random protonation at non-exchangeable sites. We present here a systematic study on the optimal degree of random sidechain protonation in RAP samples as a function of the MAS (magic angle spinning) frequency. In particular, we compare 1H sensitivity and linewidth of a microcrystalline protein, the SH3 domain of chicken ??-spectrin, for samples, prepared with 5?C25?% H2O in the E. coli growth medium, in the MAS frequency range of 20?C60?kHz. At an external field of 19.96?T (850?MHz), we find that using a proton concentration between 15 and 25?% in the M9 medium yields the best compromise in terms of sensitivity and resolution, with an achievable average 1H linewidth on the order of 40?C50?Hz. Comparing sensitivities at a MAS frequency of 60 versus 20?kHz, a gain in sensitivity by a factor of 4?C4.5 is observed in INEPT-based 1H detected 1D 1H,13C correlation experiments. In total, we find that spectra recorded with a 1.3?mm rotor at 60?kHz have almost the same sensitivity as spectra recorded with a fully packed 3.2?mm rotor at 20?kHz, even though ~20×?less material is employed. The improved sensitivity is attributed to 1H line narrowing due to fast MAS and to the increased efficiency of the 1.3?mm coil.  相似文献   

6.
NMR spectroscopy of membrane proteins involved in electron transport is difficult due to the presence of both the lipids and paramagnetic centers. Here we report the solution NMR study of the NADPH-cytochrome P450 oxidoreductase (POR) in its reduced and oxidized states. We interrogate POR, first, in its truncated soluble form (70 kDa), which is followed by experiments with the full-length protein incorporated in a lipid nanodisc (240 kDa). To overcome paramagnetic relaxation in the reduced state of POR as well as the signal broadening due to its high molecular weight, we utilized the methyl-TROSY approach. Extrinsic 13C-methyl groups were introduced by modifying the engineered surface-exposed cysteines with methyl-methanethiosulfonate. Chemical shift dispersion of the resonances from different sites in POR was sufficient to monitor differential effects of the reduction–oxidation process and conformation changes in the POR structure related to its function. Despite the high molecular weight of the POR-nanodisc complex, the surface-localized 13C-methyl probes were sufficiently mobile to allow for signal detection at 600 MHz without perdeuteration. This work demonstrates a potential of the solution methyl-TROSY in analysis of structure, dynamics, and function of POR, which may also be applicable to similar paramagnetic and flexible membrane proteins.  相似文献   

7.
We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line broadening effects. At 40 mmol·L−1 of the PRE agent, we obtain a 1.7- to 1.9-fold larger signal to noise (S/N) for the respective 2D NMR experiments. High solvent accessibility of intrinsically disordered protein (IDP) residues renders this class of proteins particularly amenable to the outlined approach.  相似文献   

8.
We present here 1H-detected triple-resonance H/N/C experiments that incorporate CO–CA and CA–CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields 1H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-HN back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.  相似文献   

9.
Fast magic angle spinning (MAS) NMR spectroscopy is emerging as an essential analytical and structural biology technique. Large resolution and sensitivity enhancements observed under fast MAS conditions enable structural and dynamics analysis of challenging systems, such as large macromolecular assemblies and isotopically dilute samples, using only a fraction of material required for conventional experiments. Homonuclear dipolar-based correlation spectroscopy constitutes a centerpiece in the MAS NMR methodological toolbox, and is used essentially in every biological and organic system for deriving resonance assignments and distance restraints information necessary for structural analysis. Under fast MAS conditions (rotation frequencies above 35–40 kHz), dipolar-based techniques that yield multi-bond correlations and non-trivial distance information are ineffective and suffer from low polarization transfer efficiency. To overcome this limitation, we have developed a family of experiments, CORD–RFDR. These experiments exploit the advantages of both zero-quantum RFDR and spin-diffusion based CORD methods, and exhibit highly efficient and broadband dipolar recoupling across the entire spectrum, for both short-range and long-range correlations. We have verified the performance of the CORD–RFDR sequences experimentally on a U-13C,15N-MLF tripeptide and by numerical simulations. We demonstrate applications of 2D CORD–RFDR correlation spectroscopy in dynein light chain LC8 and HIV-1 CA tubular assemblies. In the CORD–RFDR spectra of LC8 acquired at the MAS frequency of 40 kHz, many new intra- and inter-residue correlations are detected, which were not observed with conventional dipolar recoupling sequences. At a moderate MAS frequency of 14 kHz, the CORD–RFDR experiment exhibits excellent performance as well, as demonstrated in the HIV-1 CA tubular assemblies. Taken together, the results indicate that CORD–RFDR experiment is beneficial in a broad range of conditions, including both high and moderate MAS frequencies and magnetic fields.  相似文献   

10.
Direct detection of 13C can be advantageous when studying uniformly enriched proteins, in particular for paramagnetic proteins or when hydrogen exchange with solvent is fast. A scheme recently introduced for long-observation-window band-selective homonuclear decoupling in solid state NMR, LOW-BASHD (Struppe et al. in J Magn Reson 236:89–94, 2013) is shown to be effective for 13Cα decoupling during direct 13C′ observation in solution NMR experiments too. For this purpose, adjustment of the decoupling pulse parameters and delays is demonstrated to be important for increasing spectral resolution, to reduce three-spin effects, and to decrease the intensity of decoupling side-bands. LOW-BASHD then yields 13C′ line widths comparable to those obtained with the popular IPAP method, while enhancing sensitivity by ca 35 %. As a practical application of LOW-BASHD decoupling, requiring quantitative intensity measurement over a wide dynamic range, the impact of lipid binding on the 13C′-detected NCO spectrum of the intrinsically disordered protein α-synuclein is compared with that on the 1H-detected 1H–15N HSQC spectrum. Results confirm that synuclein’s “dark state” behavior is not caused by paramagnetic relaxation or rapid hydrogen exchange.  相似文献   

11.
This protocol describes an electron spin resonance (ESR) micro-imaging method for three-dimensional mapping of oxygen levels in the immediate environment of live cells with micron-scale resolution1. Oxygen is one of the most important molecules in the cycle of life. It serves as the terminal electron acceptor of oxidative phosphorylation in the mitochondria and is used in the production of reactive oxygen species. Measurements of oxygen are important for the study of mitochondrial and metabolic functions, signaling pathways, effects of various stimuli, membrane permeability, and disease differentiation. Oxygen consumption is therefore an informative marker of cellular metabolism, which is broadly applicable to various biological systems from mitochondria to cells to whole organisms. Due to its importance, many methods have been developed for the measurements of oxygen in live systems. Current attempts to provide high-resolution oxygen imaging are based mainly on optical fluorescence and phosphorescence methods that fail to provide satisfactory results as they employ probes with high photo-toxicity and low oxygen sensitivity. ESR, which measures the signal from exogenous paramagnetic probes in the sample, is known to provide very accurate measurements of oxygen concentration. In a typical case, ESR measurements map the probe''s lineshape broadening and/or relaxation-time shortening that are linked directly to the local oxygen concentration. (Oxygen is paramagnetic; therefore, when colliding with the exogenous paramagnetic probe, it shortness its relaxation times.) Traditionally, these types of experiments are carried out with low resolution, millimeter-scale ESR for small animals imaging. Here we show how ESR imaging can also be carried out in the micron-scale for the examination of small live samples. ESR micro-imaging is a relatively new methodology that enables the acquisition of spatially-resolved ESR signals with a resolution approaching 1 micron at room temperature2. The main aim of this protocol-paper is to show how this new method, along with newly developed oxygen-sensitive probes, can be applied to the mapping of oxygen levels in small live samples. A spatial resolution of ~30 x 30 x 100 μm is demonstrated, with near-micromolar oxygen concentration sensitivity and sub-femtomole absolute oxygen sensitivity per voxel. The use of ESR micro-imaging for oxygen mapping near cells complements the currently available techniques based on micro-electrodes or fluorescence/phosphorescence. Furthermore, with the proper paramagnetic probe, it will also be readily applicable for intracellular oxygen micro-imaging, a capability which other methods find very difficult to achieve.  相似文献   

12.
Solvent paramagnetic relaxation enhancement (sPRE) arises from random collisions between paramagnetic cosolvent and protein of interest. The sPRE can be readily measured, affording protein structure information. However, lack of an inert cosolvent probe may yield sPRE values that are not consistent with protein structure. Here we synthesized a new sPRE probe, triethylenetetraamine hexaacetate trimethylamide gadolinium, or Gd(III)–TTHA–TMA. With a total of 10 coordination sites, this paramagnetic cosovlent eliminates an inner-sphere water molecule that can otherwise transfer relaxation to protein through exchange. With the metal ion centered, the new probe is largely spherical with a radius of 4.0 Å, permitting accurate back calculation of sPRE. The effectiveness Gd(III)–TTHA–TMA as a sPRE probe was demonstrated on three well-studied protein systems.  相似文献   

13.
A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU?1, respectively, corresponding to a resolution of 2.8 × 10?5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.  相似文献   

14.
The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR 15N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.  相似文献   

15.
The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR 15N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.  相似文献   

16.
A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (~40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.  相似文献   

17.
Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K+ channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.  相似文献   

18.
Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron–electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k ?1, which was 0.037 ± 0.005 min?1 derived from DEER experiments with a corresponding half-life time of 18.7 min. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein–protein and protein-DNA complex studies.  相似文献   

19.
The possibility of using the relaxation properties of nuclei for solution structure determination of paramagnetic metalloproteins is critically evaluated. First of all, it is theoretically and experimentally demonstrated that magnetization recovery in non-selective inversion recovery experiments can be approximated to an exponential in both diamagnetic and paramagnetic systems. This permits the estimate of the contribution of paramagnetic relaxation when dominant or sizable. Then, it is shown that the averaging of paramagnetic relaxation rates due to cross relaxation is often tolerably small with respect to the use of paramagnetic relaxation rates as constraints for structural determination. Finally, a protocol is proposed to use such paramagnetic relaxation rates, which depend on the sixth power of the metal to resonating nucleus distance, as constraints for solution structure determination of proteins. As an example, the available solution structure of the oxidized ferredoxin from Clostridium pasteurianum has been significantly improved in resolution especially in the proximity of the metal ions by using 69 new constraints based on paramagnetic relaxation. Proteins 29:348–358, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in ‘proton-less’ NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号