首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of phenobarbital and beta-naphthoflavone to induce parathion desulfuration, aminopyrine N-demethylation, and NADPH-cytochrome-c reductase activity in the brain and liver of male and female rats was investigated. Activities of all three enzymes were found in similar levels in both the mitochondrial and microsomal fractions of brain. There were no sex differences in brain activities. Liver activities were from 10- to 30-fold higher than brain activities when computed on a tissue-wet-weight-equivalent basis. Although exposure to both inducers increased all three enzyme activities and cytochrome P-450 in liver, neither inducer increased the enzyme activities in mitochondrial or microsomal brain fractions of either sex. Thus, these brain monooxygenase activities appear to be refractory to induction by two classical types of cytochrome P-450 inducers. This lack of inducibility could serve to protect the animal against environmentally enhanced increases in the activation of xenobiotics to neurotoxic metabolites, such as parathion desulfuration to paraoxon.  相似文献   

2.
Guinea pig ethanol metabolism as well as distribution and activities of ethanol metabolizing enzymes were studied. Alcohol dehydrogenase (ADH; EC 1.1.1.1) is almost exclusively present in liver except for minor activities in the cecum. All other organ tissues tested (skeletal muscle, heart, brain, stomach, and testes) contained only negligible enzyme activities. In fed livers, ADH could only be demonstrated in the cytosolic fraction (2.94 μmol/g liver/min at 38 °C) and its apparent Km value of 0.42 mm for ethanol as substrate is similar to the average Km of the human enzymes. Acetaldehyde dehydrogenase (ALDH; EC 1.2.1.3) of guinea pig liver was measured at low (0.05 mm) and high (10 mm) acetaldehyde concentrations and its subcellular localization was found to be mainly mitochondrial. The total acetaldehyde activity in liver amounts to 3.56 μmol/g/ min. Fed and fasted animals showed similar zero-order alcohol elimination rates after intraperitoneal injection of 1.7 or 3.0 g ethanol/kg body wt. The ethanol elimination rate of fed animals after 1.7 g ethanol/kg body wt (2.59 μmol/g liver/min) was inhibited by 80% after intraperitoneal injection of 4-methylpyrazole. Average ethanol elimination rates in vivo after 1.7 g/kg ethanol commanded only 88% of the totally available ADH activity in fed guinea pig livers. Catalase (EC 1.11.1.6), an enzyme previously implicated in ethanol metabolism, is of 3.4-fold higher activity in guinea pig (10,400 U/g liver) than in rat livers (3,100 U/g liver), but 98% inhibition by 3-amino-1,2,4-triazole did not significantly alter ethanol elimination rates. After ethanol injection, fed and fasted guinea pigs reacted with prolonged hyperglycemia.  相似文献   

3.
Selenocysteine Se-conjugates (e.g. methylselenocysteine) have been shown to be potent chemopreventive and chemoprotective agents, and inducers of apoptosis. Although the mechanism of action remains to be elucidated, beta-elimination of these compounds by beta-lyase enzymes into corresponding selenols, pyruvate and ammonia is thought to be critical. This study describes in vitro beta-lyase activity in nine rat organs using three selenocysteine Se-conjugates and S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine. For all substrates the highest beta-elimination rates were found in kidney, followed by liver, while brain, spleen, heart, large and small intestine, thyroid and lung were of minor importance. Since liver plays an important role in beta-elimination, hepatic beta-lyase activity was extensively studied using 23 selenocysteine Se-conjugates and S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and was compared with previously obtained renal beta-lyase data. The results showed that hepatic beta-lyase activities were 4-25-fold lower than the corresponding renal beta-lyase activities. Hepatic beta-elimination of the substrates appeared to be exclusively catalyzed by the pyridoxal 5'-phosphate-dependent beta-lyase enzyme kynureninase. Studies performed with human hepatic cytosols of three individuals showed that hepatic beta-lyase activity was 2-5-fold higher when compared with the previously obtained human renal activity. Significant correlation was obtained between human hepatic beta-lyase activities of three individuals. The relevance of this data for using SeCys-conjugates as chemopreventive and a chemoprotective agent is discussed. Based on the large differences in organ-selective beta-elimination and specific beta-lyase activity between rat and humans, the rat might not be a good model to investigate nephrotoxicity of cysteine S-conjugates, and chemoprevention and chemoprotection of SeCys-conjugates in man.  相似文献   

4.
Estrogens have previously been shown to induce DNA damage in Syrian hamster kidney, a target organ of estrogen-induced cancer. The biochemical mechanism of DNA adduction has been postulated to involve free radicals generated by redox cycling of estrogens. As part of an examination of this postulate, we measured the effect of chronic estrogen treatment of hamsters on renal microsomal enzymes mediating catechol estrogen formation and free radical generation by redox cycling of catechol estrogens. In addition, the activities of the same enzymes were assayed in liver in which tumors do not develop under these conditions. At saturating substrate concentration, 2- and 4-hydroxyestradiol were formed in approximately equal amounts (26 and 28 pmol/mg protein/min, respectively), which is 1-2 orders of magnitude higher than reported previously. Estradiol treatment for 2 months decreased 2-hydroxylase activity per mg protein by 75% and 4-hydroxylase activity by 25%. Hepatic 2- and 4-hydroxylase activities were 1256 and 250 pmol/mg protein/min, respectively. Estrogen treatment decreased both activities by 40-60%. Basal peroxidatic activity of cytochrome P-450, the enzyme which oxidizes estrogen hydroquinones to quinones in the redox cycle, was 2.5-fold higher in liver than in kidney and did not change with estrogen treatment. However, when normalized for specific content of cytochrome P-450 the enzyme activity in kidney was 2.5-fold higher than in liver and increased further by 2-3-fold with chronic estrogen treatment. The activity of cytochrome P-450 reductase, which reduces quinones to hydroquinones in the estrogen redox cycle, was 6-fold higher in liver than in kidney of both control and estrogen-treated animals. When normalized for cytochrome P-450, the activity of this enzyme was similar in liver and kidney, but over 4-fold higher in kidney than liver after estrogen treatment. Basal concentrations of superoxide, a product of redox cycling, were 2-fold higher in liver than in kidney. Estrogen treatment did not affect this parameter in liver, but increased it in kidney by 40%. These data provide evidence for a preferential preservation of enzymes involved in estrogen activation.  相似文献   

5.
Thymidylate (dTMP) synthase (EC 2.1.1.45) activity was measured in 100,000 x g supernatant fluid with a sensitive, rapid radio assay. The activity in normal rat liver was low (0.098-0.204 nmol/hr/mg protein). dTMP synthase specific activities in rat thymus, spleen, bone marrow, testis, lung, heart, brain, kidney, and small intestine were 6297, 1842, 1500, 788, 215, 76, 61, 39 and 24%, respectively, of that of the liver. The activity in 5-day-old rat liver was 16-fold higher than in adult. dTMP synthase activity increased in rat hepatomas to 7- to 125-fold of that of normal rat liver. There was a significant correlation between the increase in synthase activity and the proliferation rates of the hepatomas. In 8 human colon carcinomas, dTMP synthase activity increased to 2.9- to 8-fold of that of normal human colon mucosa. In leukemic leukocytes from 3 leukemia patients, activity was 8- to 10-fold higher than in normal leukocytes.  相似文献   

6.
Acute hyperammonemia was induced by 15NH4+ infusion in portacaval-shunted (PCS) and control rats to investigate its effects on cerebral metabolism of glutamine, glutamate and gamma-aminobutyrate. Cerebral 15N-metabolites were observed by 15N-NMR spectroscopy in the ex vivo brain, removed in toto at the end of infusion. Key 15N-metabolites in the brain and liver were quantitated and their specific activities measured by NMR and biochemical assays in perchloric acid extracts of the freeze-clamped organs. In the ex vivo brain, [gamma-15N]glutamine, present at tissue concentrations of 3-5 mumol/g with 15N enrichment of 36-48%, was observable within 6-13 min of data acquisition. [alpha-15N]glutamine/glutamate, each present at 0.5-1 mumol/g (approx. 10% enrichment), were observed in 27 min. The results demonstrate the feasibility of observing these cerebral metabolites by 15N-NMR within a physiological time scale. In a rat pretreated with glutamine synthetase inhibitor, L-methionine DL-sulfoximine, cerebral [15N]gamma-aminobutyrate was observed after 910 min. In PCS rats, decreased 15NH4+ removal in the liver was accompanied by formation of approx. 2-fold higher concentration of cerebral [gamma-15N]glutamine relative to that in weight-matched controls. The result suggests that increased diffusion of blood-borne 15NH3 into the brain led to increased [gamma-15N]glutamine synthesis in astrocytes as well as ammonia-mediated inhibition of glutaminase.  相似文献   

7.
L-cysteine desulfuration was examined in tissues of Rana temporaria, in October and January. The activities of 3-mercaptopyruvate sulfurtransferase (MPST), cystathionine gamma-lyase (CST) and rhodanese were primarily concentrated in frog liver and kidney. The values of CST and rhodanese activity, as well as sulfane sulfur compounds levels fell in the range characteristic of rat. For each of the investigated tissues changes noted in the enzymatic activities and in the level of glutathione (GSH), protein-bound cysteine (PbCys) and sulfane sulfur compounds were dependent on the month in which the determination was performed, and on the character of the tissue. In such tissues as the liver or gonads, high GSH levels and high activities of MPST (in the liver) or MPST and rhodanese (in the gonads) seemed to accompany protein biosynthesis during hibernation. PbCys, the level of which was consequently diminished in all tissues in January, compensated the absence of exogenous cysteine. A significantly reduced GSH level in the brain in January seemed to be correlated with decreased requirements of the tissue for this important natural antioxidant at diminished thyroid hormones levels in the serum and minimal oxygen consumption during the hibernation. In the kidney, the possible participation of sulfane sulfur compounds in detoxification processes requires elucidation, similarly as in protection against cellular oxidative stress at extremely low levels of GSH.  相似文献   

8.
Copper deficiency causes more salient pathologic changes in the heart than in the liver of rats. Although oxidative stress has been implicated in copper deficiency-induced pathogenesis, little is known about the selective toxicity to the heart. Therefore, we examined the relationship between the severity of copper deficiency-induced oxidative damage and the capacity of antioxidant defense in heart and liver to investigate a possible mechanism for the selective cardiotoxicity. Weanling rats were fed a purified diet deficient in copper (0.4 μg/g diet) or one containing adequate copper (6.0 μg/g diet) for 4 weeks. Copper deficiency induced a 2-fold increase in lipid peroxidation in the heart (thiobarbituric assay) but did not alter peroxidation in the liver. The antioxidant enzymatic activities of superoxide dismutase, catalase, and glutathione peroxidase were, respectively, 3-, 50- and 1.5-fold lower in the heart than in the liver, although these enzymatic activities were depressed in both organs by copper deficiency. In addition, the activity of glutathione reductase was 4 times lower in the heart than in the liver. The data suggest that a weak antioxidant defense system in the heart is responsible for the relatively high degree of oxidative damage in copper-deficient hearts.  相似文献   

9.
Extracts prepared from liver, kidney, lung and brain of camel contain glutathione, glutathione S-transferase and glutathione reductase. Liver had the highest level of glutathione (218.7 mumol/g wet weight) whereas brain had the lowest level (66.4 mumol/g wet weight). The highest activity for glutathione reductase was found in the kidney (2.6 mumol/min/mg protein) while the lowest activity was found in the lung (0.9 mumol/min/mg protein). Glutathione S-transferase activity was the highest in liver (4.2 mumol/min/mg protein) and the lowest in brain (1 mumol/min/mg protein). Purified glutathione S-transferases from lung, kidney, brain and liver were similar in their molecular size, subunit composition as well as immuno-reactivity and showed some differences in their response to heat and inhibitors.  相似文献   

10.
A novel reversed-phase high-performance liquid chromatographic method was developed to measure UDP-glucuronosyltransferase (UGT) activity. Radiochemical and UV detection were combined in this UDP-[(14)C]glucuronic acid-utilizing method which was especially aimed at determination of low activities typical of N-glucuronidation of various amines and heterocycles. 4-Nitrophenol and levomedetomidine were used as substrates to validate this method, and applicability was tested with commonly used model substrates of N-glucuronidation, 4-aminobiphenyl and amitriptyline, and several 4-arylalkyl-1H-imidazole compounds. Detection limits were very low, 0.5-10 pmol, corresponding to UGT activities from 0.04 to 0.8 pmol/min/mg protein depending on UV absorbance of the glucuronide conjugate. The sensitivity was 10- to 100-fold compared with earlier HPLC assays using radiochemical detection. This method enabled quantitation without a reference glucuronide, and its high sensitivity allows for characterization of N-glucuronidation kinetics of various substrates. Using this method, human liver microsomal UGT activity was determined for a series of 4-arylalkyl-1H-imidazoles. Of these compounds, levomedetomidine was glucuronidated at the highest rate, 1.69 nmol/min/mg protein, using a 500 microM substrate concentration. In comparison, activities for the commonly used UGT substrates, 4-nitrophenol, 4-aminobiphenyl, and amitriptyline were 18.80, 3.23, and 0.23 nmol/min/mg protein, respectively.  相似文献   

11.
The maximal catalytic activity of glutamine synthetase was measured in lung homogenates of the rat (being 5.46 +/- 0.29 mumol/min per g wet wt. or 31.70 +/- 2.62 nmol/min per mg of protein at 37 degrees C, in fed animals). The activity is similar to that of liver, but 16-fold higher than that in quadriceps muscles. Chronic (NH4Cl-induced) or acute (HCl-induced) metabolic acidosis had no effects on enzyme activity, but there was a marked increase in the activity of glutamine synthetase in starved (30-40%), streptozotocin-diabetic (17%), dexamethasone-treated (18-22%), laparotomized (25-27%) and septic rats (24-45%).  相似文献   

12.
Treatment with the antioxidant butylated hydroxyanisole (BHA) or the azo dye Sudan III during two weeks led to changes in the brain enzymatic antioxidant defense of Syrian golden hamsters. BHA was able to induce liver superoxide dismutase (SOD) 2-fold but had no effect on the brain SOD activity, whereas SOD activity was reduced to 50% in brain and remained unchanged in liver with Sudan III. These two substances are known inducers of DT-diaphorase and in fact this enzymatic activity was induced 4- and 6-fold in liver with BHA and Sudan III, respectively. However, BHA promoted a significant 40% reduction, whereas no change was observed with Sudan III in brain DT-diaphorase activity. Glutathione(GSH)-related enzymatic activities were also assayed in brain and liver. No induction was observed with BHA or Sudan III for any of the activities tested in hamster brain: GSH S-transferase (GST), GSH peroxidase (GSH-Px) and glutathione disulfide (GSSG) reductase (GR). Only 1.3- and 1. 4-fold increases of GST and GR activities were observed in liver and no change in any of these enzymatic activities in brain with BHA; a partial limitation of permeability to BHA of the blood-brain barrier may explain this results. Furthermore, Sudan III promoted reductions in all these GSH-related enzymatic activities in brain and liver. The possible explanations for these results are discussed.Deceased 4th November 1998  相似文献   

13.
It has been postulated that tumor suppressor genes are involved in the cascade of events leading to the toxicity of diverse xenobiotics. Therefore, we have assessed the comparative effects of 0.01, 0.10, and 0.50 median lethal doses (LD(50)) of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), endrin, naphthalene, and sodium dichromate (VI) [Cr(VI)] on lipid peroxidation, DNA fragmentation, and enhanced production of superoxide anion (cytochrome c reduction) in liver and brain tissues of p53-deficient and standard C57BL/6NTac mice to determine the role of p53 gene in the toxic manifestations produced by these diverse xenobiotics. In general, p53-deficient mice are more susceptible to all four xenobiotics than C57BL/6NTac mice, with dose-dependent effects being observed. Specifically, at a 0.50 LD(50) dose, naphthalene and Cr(VI) induced the greatest toxicity in the liver tissue of mice, and naphthalene and endrin exhibited the greatest effect in the brain tissue. At this dose, TCDD, endrin, naphthalene, and Cr(VI) induced 2.3- to 3.7-fold higher increases in hepatic lipid peroxidation and 1.8- to 3.0-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. At a 0. 10 LD(50) dose, TCDD, endrin, naphthalene, and Cr(VI) induced 1.3- to 1.8-fold higher increases in hepatic lipid peroxidation and 1.4- to 1.9-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. Similar results were observed with respect to DNA fragmentation and cytochrome c reduction (superoxide anion production). For example, at the 0.10 LD(50) dose, the four xenobiotics induced increases of 1.6- to 3. 0-fold and 1.5- to 2.1-fold in brain and liver DNA fragmentation, respectively, and increases of 1.5- to 2.3-fold and 1.4- to 2.5-fold in brain and liver cytochrome c reduction (superoxide anion production), respectively, in p53-deficient mice compared with control C57BL/6NTac mice. These results suggest that the p53 tumor suppressor gene may play a role in the toxicity of structurally diverse xenobiotics.  相似文献   

14.
We have described the tissue distribution and properties of thyroid hormone (TH) deiodination activities of the marine American plaice, Hippoglossoides platessoides. We then studied the 1- or 4-week responses of the plaice liver and brain deiodination activities and the plasma thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels to an intraperitoneal injection (5-500 ng/g) of the polychlorinated biphenyl (PCB) congeners 77 (3,3'-4,4'-tetrachlorobiphenyl) or 126 (3,3',4,4',5-pentachlorobiphenyl). T4 and 3,3'5'-triiodothyronine (rT3) outer-ring deiodination (ORD) activities were greater in liver than in kidney, gill, heart, brain, intestine or muscle; inner-ring deiodination (IRD) activity occurred in all tissues but was consistently higher in brain. Deiodination characteristics (optimal pH, optimal dithiothreitol concentration, responses to inhibitors and apparent Km values of 0.6-4 nM) fell in the same rage as those of low-Km deiodinases in other teleosts. Deiodination activities were maximal when assayed at 25 degrees C but uniformly low over the natural range of 0-9 degrees C. Neither PCB 77 nor PCB 126 altered brain T4ORD activity or plasma T4 levels (P < 0.05). However, at 1 week post injection hepatic T4ORD activity was increased and plasma T3 levels lowered by PCB 77 (5 and 25 ng/g), while hepatic IRD activity was increased by PCB 126 (50 and 500 ng/g). Neither PCB 77, PCB 126 nor selected hydroxylated. PCBs given in vitro compared with T4 for binding sites on plasma proteins or altered hepatic deiodination activity, indicating no direct action on plasma proteins or deiodinases We conclude that plaice TH deiodination tissue distribution and characteristics resemble those of other teleosts. Deiodination activities are low at natural assay temperatures but at 1 week show some responses to PCBs 77 and 126.  相似文献   

15.
Abstract: Glutathione- S -transferase activity in the brain of male mammals (rat and mouse) was found to be relatively lower than in that of females. In contrast, the male aves (pigeon, kite, vulture, and crow) exhibited comparatively higher activity of brain glutathione- S -transferase than the corresponding females. Postnatal development of cytosolic glutathione-S-transferase activity in the rat brain was also investigated. The day-7 rats showed a low activity of 48 nmol/min/mg protein that gradually increased 3.2-fold over the age of 28 days. No striking differences in brain enzyme activities were observed between the 35- and 90-day-old rats. Discrete brain regions of immature rats were found to possess considerable but lower quantities of glutathione- S -transferase activity than those of the adults. The activity increased with the onset of development and attained a steady state after 21 days of age.  相似文献   

16.
1. The maximum activities of some key enzymes, which provide a quantitative indices of flux through several important pathways have been measured in brain, liver, muscle, white and brown adipose tissue and lymphocytes of mature and aged rats. 2. The results were expressed as mumol/min per g fresh weight and nmol/min per mg protein. 3. On the both basis, as compared to mature rats, hexokinase activity is decreased in brown adipose tissue and increased in soleus muscle. 4. Glucose-6-phosphate dehydrogenase activity is decreased in most tissues and increased in brain. 5. Citrate synthase activity, which provides a qualitative index of the Krebs cycle, is decreased in white adipose tissues and lymphocytes. 6. Glutaminase activity is decreased in brain, white and brown adipose tissues but is increased in lymphocytes.  相似文献   

17.
Subcellular organellles from livers of rats three days prenatal to 50 weeks postnatal were separated on sucrose gradients. The peroxisomes had a constant density of 1.243 g/ml throughout the life of the animal. The density of the mitochondria changed from about 1.236 g/ml at birth to a constant value of 1.200 g/ml after two weeks. The peroxisomal and mitochondrial fatty acid beta-oxidation and the peroxisomal and supernatant activities of catalase and glycerol-3-phosphate dehydrogenase were measured at each age, as well as the peroxisomal core enzyme, urate oxidase, and the mitochondrial matrix enzyme, glutamate dehydrogenase. All of these activities were very low or undetectable before birth. Mitochondrial glutamate dehydrogenase and peroxisomal urate oxidase reached maximal activities per g of liver at two and five weeks of age, respectively. Fatty acid beta-oxidation in both peroxisomes and mitochondria and peroxisomal glycerol-3-phosphate dehydrogenase exhibited maximum activities per g of liver between one and two weeks of age before weaning and then decreased to steady state levels in the adult. Peroxisomal beta-oxidation accounted for at least 10% of the total beta-oxidation activity in the young rat liver, but became 30% of the total in the liver of the adult female and 20% in the adult male due to a decrease in mitochondrial beta-oxidation after two weeks of age. The greatest change in beta-oxidation was in the mitochondrial fraction rather than in the peroxisomes. At two weeks of age, four times as much beta-oxidation activity was in the mitochondria as in the peroxisomal fraction. Peroxisomal glycerol-3-phosphate dehydrogenase activity accounted for 5% to 7% of the total activity in animals younger than one week, but only 1% to 2% in animals older than one week. Up to three weeks of age, 85% to 90% of the liver catalase was recovered in the peroxisomes. The activity of peroxisomal catalase per g of rat liver remained constant after three weeks of age, but the total activity of catalase further increased 2.5- to 3-fold, and all of the increased activity was in the supernatant fraction.  相似文献   

18.
A kinetic analysis of cytochrome P450-mediated desulfuration (activation) or dearylation (detoxication) showed that rat hepatic microsomes have a greater capacity to detoxify and a lower capacity to activate chlorpyrifos compared to parathion. Kinetic curves for the desulfuration of both parathion and chlorpyrifos were biphasic; K s of 0.23 and 71.3 μM were calculated for parathion, and 1.64 and 50.4 μM for chlorpyrifos. While phenobarbital (PB) exposure seemed to generally lower the Kmapp s for desulfuration except for the low Km activity on chlorpyrifos, the results were not statistically significant. While the low Km activity contributed 44 and 60% of the control Vmax for parathion and chlorpyrifos, respectively, it contributed 50 and 17% in PB-treated rats. These studies have indicated the presence of a low Km activity capable of functioning at very low substrate concentrations. A single dearylation K was calculated, 56.0 and 9.8 μM for parathion and chlorpyrifos, respectively. Phenobarbital exposure seemed to raise the Ks of dearylation; however, again, the results were not statistically significant. While numerous biochemical factors contribute to the overall toxicity levels of phosphorothionate insecticides, the in vitro efficiencies of hepatic microsomal desulfuration and dearylation of parathion and chlorpyrifos correspond to the acute toxicity levels.  相似文献   

19.
NADPH-dependent estrogen-2/4-hydroxylase activities in rat brain and liver microsomes were compared with respect to the utilization of different estrogens as substrates and the inhibitory effects of alpha-naphthoflavone, metyrapone and steroids. Of 6 different estrogens used as substrates, only 17 beta- and 17 alpha-estradiol were transformed relatively effectively by brain microsomes. In contrast liver microsomes utilized these two estrogens as well as ethynyl estradiol, estrone and diethylstilbestrol effectively. Estriol was a poor substrate for estrogen-2/4-hydroxylase activity in both tissues. With 40 microM 17 beta-estradiol as substrate the estrogen-2/4-hydroxylase activities in brain and liver were inhibited by alpha-naphthoflavone, metyrapone, progesterone, 17 alpha-hydroxyprogesterone and testosterone. The brain enzyme activity appeared to be more sensitive than the liver enzyme to inhibition by alpha-naphthoflavone and metyrapone. Testosterone propionate (50-100 microM) stimulated the brain enzyme activity significantly. Progesterone and 17 alpha-hydroxyprogesterone were the most effective steroidal inhibitors of brain estrogen-2/4-hydroxylase activity. In the liver the inhibitory potencies of 3 different steroids varied, depending on the estrogen used as substrate. With 17 beta-estradiol, for example, progesterone was the most potent steroidal inhibitor, while corticosterone was the most potent inhibitor when diethylstilbestrol was used as substrate. These findings indicate that rat liver microsomes can utilize a wider range of different estrogens for catecholestrogen formation than brain microsomes and suggest that the profiles of catecholestrogen-forming P-450 isozymes in the two organs differ.  相似文献   

20.
The optimum conditions (pH, microsomal protein amount and substrate concentration) of guinea-pig liver, lung and kidney microsomal aniline 4-hydroxylase, ethylmorphine N-demethylase and benzo[a]pyrene hydroxylase activities were determined. Male guinea-pigs weighing 500-700 g were administered 3-methylcholanthrene (25 mg/kg, i.p. 3 days), phenobarbital (75 mg/kg, i.p. 3 days), pyrethrum (120 mg/kg, i.p. 2 days) and 2,4,5-T isooctylester (200 mg/kg, i.p. 3 days). 3-Methylcholanthrene treatment caused significant increases in liver microsomal benzo[a]pyrene hydroxylase and kidney microsomal aniline 4-hydroxylase activities. However, with phenobarbital treatment the only significant increase was observed in liver microsomal ethylmorphine N-demethylase activity. Pyrethrum treatment decreased kidney microsomal ethylmorphine N-demethylase activity significantly. 2,4,5-T isooctylester treatment increased liver microsomal aniline 4-hydroxylase and lung microsomal ethylmorphine N-demethylase activities significantly. Liver microsomal NADPH-cytochrome c reductase activity was increased significantly by phenobarbital and pyrethrum treatment. The other treatments did not cause any significant changes in microsomal NADPH-cytochrome c reductase activities of liver, lung and kidney. Cytochrome P-450 content of guinea-pig liver microsomes were increased significantly about 2.5-fold and 2-fold by treatment with 3-methylcholanthrene and phenobarbital, respectively. 3-Methylcholanthrene also caused 1 nm spectral shift in the absorption maxima of CO difference spectrum of the dithionite-reduced liver microsomal cytochrome P-450, forming P-449.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号