首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic analysis has been used to access how well scavenger inhibition can characterize the reactivity of oxidants produced in the iron-catalyzed reaction of H2O2 with xanthine oxidase-derived O2-.. Formate oxidation to CO2, deoxyribose oxidation, benzoate hydroxylation, and ethylene production from alpha-keto-gamma-methiolbutyric acid (KMB) were measured. With Fe(EDTA) as catalyst, inhibition by most scavengers was quantitatively as expected for OH. involvement. Exceptions were urate and thiourea, which inhibited excessively and appeared to scavenge intermediates of the detection reactions. With nonchelated iron, there was minimal formate oxidation, but benzoate, KMB, and deoxyribose gave, respectively, 17%, 25%, and approximately the same product yield as with Fe(EDTA). Deoxyribose oxidation was not inhibited by some scavengers and excessively inhibited by others. However, scavengers that did not inhibit deoxyribose oxidation did inhibit with KMB and benzoate, and differences in scavenger effects in the presence and absence of EDTA in these assays were relatively minor. The results with formate and deoxyribose, but not KMB and benzoate, can therefore exclude free OH. as a significant oxidant product of the nonchelated iron-catalyzed Haber-Weiss reaction. It is proposed that the different patterns of scavenger inhibition arise in the different assays because scavengers can react with intermediates in the detection reactions, all of which are multistep chains. Thus, inhibition may not signify OH. involvement, and similarities with inhibition expected for OH. my be fortuitous.  相似文献   

2.
The mechanism of oxidation of deoxyribose to thiobarbituric acid-reactive products by Fenton systems consisting of H2O2 and either Fe2+ or Fe2+ (EDTA) has been studied. With Fe2+ (EDTA), dependences of product yield on reactant concentrations are consistent with a reaction involving OH.. With Fe2+ in 5-50 mM phosphate buffer, yields of oxidation products were much higher and increased with increasing deoxyribose concentration up to 30 mM. The product yield varied with H2O2 and Fe2+ concentrations in a way to suggest competition between deoxyribose and both reactants. Deoxyribose oxidation by Fe2+ and H2O2 was enhanced 1.5-fold by adding superoxide dismutase, even though superoxide generated by xanthine oxidase increased deoxyribose oxidation. These results are not as expected for a reaction involving free OH. or site localized OH. product on the deoxyribose. They can be accommodated by a mechanism of deoxyribose oxidation involving an iron(IV) species formed from H2O2 and Fe2+, but the overall conclusion is that the system is too complex for definitive identification of the Fenton oxidant.  相似文献   

3.
Using paraquat, adriamycin, and anthraquinone 6-sulfonate, we have investigated the ability of radical-driven Fenton reactions to oxidize formate or deoxyribose when catalyzed by iron complexed with citrate, ADP, ATP, or pyrophosphate. Radicals were generated either radiolytically or enzymatically with xanthine oxidase or ferredoxin reductase. With each radical source, the citrate, ADP, and ATP complexes were at least 50% as active as Fe(EDTA) at catalyzing deoxyribose oxidation, and slightly less active as catalysts of CO2 formation from formate. Fe(pyrophosphate) was less efficient and in some cases inactive. Although it is not possible to definitively identify the oxidant involved, it behaved more like the hydroxyl radical than the proposed ferryl or peroxoferrous species formed in equivalent reactions catalyzed by nonchelated iron, which can oxidize deoxyribose but not formate. Chelator concentrations of 1-2 mM were required for maximum effect, which implies that the major effect of the chelators is on the reactivity of Fe2+ in the Fenton reaction with H2O2. This also suggests that any iron available physiologically could participate in the Fenton reaction in a nonchelated form, and produce a ferryl species rather than the hydroxyl radical. Reactions of the organic radicals contrast with the equivalent reactions of superoxide (Haber-Weiss reaction) for which the same iron chelates are all very inefficient catalysts. Fenton reactions driven by organic reducing radicals may therefore contribute more to the toxicity of redox cycling compounds than equivalent reactions of superoxide.  相似文献   

4.
A ferric-EDTA complex, prepared directly from FeCl3 or from an oxidized ferrous salt, reacts with H2O2 to form hydroxyl radicals (.OH), which degrade deoxyribose and benzoate with the release of thiobarbituric acid-reactive material, hydroxylate benzoate to form fluorescent dihydroxy products and react with 5,5-dimethylpyrrolidine N-oxide (DMPO) to form a DMPO-OH adduct. Degradation of deoxyribose and benzoate and the hydroxylation of benzoate are substantially inhibited by superoxide dismutase and .OH-radical scavengers such as formate, thiourea and mannitol. Inhibition by the enzyme superoxide dismutase implies that the reduction of the ferric-EDTA complex for participation in the Fenton reaction is superoxide-(O2.-)-dependent, and not H2O2-dependent as frequently implied. When ferric-bipyridyl complex at a molar ratio of 1:4 is substituted for ferric-EDTA complex (molar ratio 1:1) and the same experiments are conducted, oxidant damage is low and deoxyribose and benzoate degradation were poorly if at all inhibited by superoxide dismutase and .OH-radical scavengers. Benzoate hydroxylation, although weak, was, however, more effectively inhibited by superoxide dismutase and .OH-radical scavengers, implicating some role for .OH. The iron-bipyridyl complex had available iron-binding capacity and therefore would not allow iron to remain bound to buffer or detector molecules. Most .OH radicals produced by the iron-bipyridyl complex and H2O2 are likely to damage the bipyridyl molecules first, with few reacting in free solution with the detector molecules. Deoxyribose and benzoate degradation appeared to be mediated by an oxidant species not typical of .OH, and species such as the ferryl ion-bipyridyl complex may have contributed to the damage observed.  相似文献   

5.
The ability of paraquat radicals (PQ+.) generated by xanthine oxidase and glutathione reductase to give H2O2-dependent hydroxyl radical production was investigated. Under anaerobic conditions, paraquat radicals from each source caused chain oxidation of formate to CO2, and oxidation of deoxyribose to thiobarbituric acid-reactive products that was inhibited by hydroxyl radical scavengers. This is in accordance with the following mechanism derived for radicals generated by γ-irradiation [H. C. Sutton and C. C. Winterbourn (1984) Arch. Biochem. Biophys.235, 106–115] PQ+. + Fe3+ (chelate) → Fe2+ (chelate) + PQ++ H2O2 + Fe2+ (chelate) → Fe3+ (chelate) + OH? + OH.. Iron-(EDTA) and iron-(diethylenetriaminepentaacetic acid) (DTPA) were good catalysts of the reaction; iron complexed with desferrioxamine or transferrin was not. Extremely low concentrations of iron (0.03 μm) gave near-maximum yields of hydroxyl radicals. In the absence of added chelator, no formate oxidation occurred. Paraquat radicals generated from xanthine oxidase (but not by the other methods) caused H2O2-dependent deoxyribose oxidation. However, inhibition by scavengers was much less than expected for a reaction of hydroxyl radicals, and this deoxyribose oxidation with xanthine oxidase does not appear to be mediated by free hydroxyl radicals. With O2 present, no hydroxyl radical production from H2O2 and paraquat radicals generated by radiation was detected. However, with paraquat radicals continuously generated by either enzyme, oxidation of both formate and deoxyribose was measured. Product yields decreased with increasing O2 concentration and increased with increasing iron(DTPA). These results imply a major difference in reactivity between free and enzymatically generated paraquat radicals, and suggest that the latter could react as an enzyme-paraquat radical complex, for which the relative rate of reaction with Fe3+ (chelate) compared with O2 is greater than is the case with free paraquat radicals.  相似文献   

6.
Uroporphyrin I, haematoporphyrin and haematoporphyrin derivative had no effect on O2-. generation during oxidation of hypoxanthine by xanthine oxidase and on the formation of hydroxyl radicals (OH.) in the hypoxanthine/xanthine oxidase/Fe3+-EDTA/deoxyribose system. On the other hand, these porphyrins strongly inhibited O2-. formation in a horseradish peroxidase/H2O2/NADPH mixture, whereas they augmented OH. generation in this system after addition of Fe3+-EDTA. Experimental evidence suggests that these observations should be ascribed to the formation of a porphyrin anion radical in the horseradish peroxidase/NADPH system. The formation of this anion radical was confirmed by e.s.r. spectroscopy. This radical is apparently unable to reduce cytochrome c, but it can replace O2-. in the OH.-generating Haber-Weiss reaction.  相似文献   

7.
When OH. radicals are formed in a superoxide-driven Fenton reaction, in which O2.- is generated enzymically, deoxyribose degradation is effectively inhibited by CuZn- and Mn-superoxide dismutases. The products of this reaction are H2O2 and a Fe3+-EDTA chelate. The mixing of H2O2 and a Fe3+-EDTA chelate also generates OH. radicals able to degrade deoxyribose with the release of thiobarbituric acid-reactive material. This reaction too is inhibited by CuZn- and Mn-superoxide dismutases, suggesting that most of the OH. is formed by a non-enzymic O2.--dependent reduction of the Fe3+-EDTA chelate. Since the reaction between the Fe3+-EDTA chelate and H2O2 leads to a superoxide dismutase-inhibitable formation of OH. radicals, it could suggest a much wider protective role for the superoxide dismutase enzymes in biological systems. Urate produced during the reaction of xanthine oxidase and hypoxanthine limits deoxyribose degradation as well as the effectiveness of the superoxide dismutase enzymes to inhibit damage to deoxyribose by H2O2 and the Fe3+-EDTA chelate. Some of this damage may result from an O2.--independent pathway to OH. formation in which urate reduces the ferric complex.  相似文献   

8.
Hydroxyl radicals (OH.) can be formed in aqueous solution by a superoxide (O2.-)-generating system in the presence of a ferric salt or in a reaction independent of O2.- by the direct addition of a ferrous salt. OH. damage was detected in the present work by the release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate. The carbohydrates deoxyribose, deoxygalactose and deoxyglucose were substantially degraded by the iron(II) salt and the iron(III) salt in the presence of an O2.- -generating system, whereas deoxyinosine, deoxyadenosine and benzoate were not. Addition of EDTA to the reaction systems producing radicals greatly enhanced damage to deoxyribose, deoxyinosine, deoxyadenosine and benzoate, but decreased damage to deoxygalactose and deoxyglucose. Further, OH. scavengers were effective inhibitors only when EDTA was present. Inhibition by catalase and desferrioxamine confirmed that H2O2 and iron salts were essential for these reactions. The results suggest that, in the absence of EDTA, iron ions bind to the carbohydrate detector molecules and bring about a site-specific reaction on the molecule. This reaction is poorly inhibited by most OH. scavengers, but is strongly inhibited by scavengers such as mannitol, glucose and thiourea, which can themselves bind iron ions, albeit weakly. In the presence of EDTA, however, iron is removed from these binding sites to produce OH. in 'free' solution. These can be readily intercepted by the addition of OH. scavengers.  相似文献   

9.
Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide   总被引:11,自引:0,他引:11  
Arachidonic acid was co-oxidized by xanthine oxidase. Both superoxide radical and hydrogen peroxide were required for oxidation, as shown by essentially complete inhibition caused by superoxide dismutase or by catalase. Pure arachidonate, free of lipid hydroperoxides, was susceptible to this co-oxidation, and the presence of lipid hydroperoxides did not accelerate the process. The role of trace metals was indicated by the stimulatory effect of EDTA-Fe and by the inhibitory effect of diethylenetriamine pentaacetate. Initiation of arachidonate co-oxidation was due to a potent oxidant generated by the interaction of H2O2 and O2- in the presence of Fe, rather than to either O2- or H2O2 per se. Hence, mannitol, a scavenger of OH ., but not of O2- or H2O2, also inhibited oxidation. Arachidonic acid autoxidation, a much slower process than xanthine oxidase co-oxidation, was barely detectable on the time scale of these observations. Unlike the co-oxidation, autoxidation was autocatalytic and therefore accelerated by hydroperoxide products. Marked quantitative differences in the distribution of isomeric hydroperoxide products of enzymic co-oxidation, as compared to the autoxidation, were noted and their significance was discussed.  相似文献   

10.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

11.
Adriamycin under partially anaerobic conditions degrades deoxyribose with the release of thiobarbituric acid-reactive products. This reaction is seen when electrons are transferred to adriamycin by xanthine oxidase or ferredoxin reductase to form the semiquinone free radical. Under the conditions described, damage to deoxyribose was inhibited by hydroxyl radicals scavengers, catalase and iron chelators. When the ratio of iron chelator to iron salt is varied both EDTA and diethylenetriamino penta-acetic acid (DETAPAC) show stimulatory properties whereas desferrioxamine remains a potent inhibitor of all reaction.  相似文献   

12.
We report our finding that the reaction between the adriamycin semiquinone (produced by reduction of the drug by xanthine oxidase) and H2O2 in N2 causes deoxyribose degradation to a thiobarbituric acid-reactive chromogen. Deoxyribose breakdown was inhibited by scavengers of hydroxyl radicals, providing evidence for the participation of hydroxyl radicals. The reaction was detected in air, but was less efficient in air than in N2. Deoxyribose degradation did not require a metal catalyst, and was inhibited by superoxide dismutase in air, but not N2. A similar reaction with deoxyribose in DNA may be of major importance in the antitumour action of adriamycin.  相似文献   

13.
Peroxidases catalyze the dehydrogenation by hydrogen peroxide (H2O2) of various phenolic and endiolic substrates in a peroxidatic reaction cycle. In addition, these enzymes exhibit an oxidase activity mediating the reduction of O2 to superoxide (O2.-) and H2O2 by substrates such as NADH or dihydroxyfumarate. Here we show that horseradish peroxidase can also catalyze a third type of reaction that results in the production of hydroxyl radicals (.OH) from H2O2 in the presence of O2.-. We provide evidence that to mediate this reaction, the ferric form of horseradish peroxidase must be converted by O2.- into the perferryl form (Compound III), in which the haem iron can assume the ferrous state. It is concluded that the ferric/perferryl peroxidase couple constitutes an effective biochemical catalyst for the production of .OH from O2.- and H2O2 (iron-catalyzed Haber-Weiss reaction). This reaction can be measured either by the hydroxylation of benzoate or the degradation of deoxyribose. O2.- and H2O2 can be produced by the oxidase reaction of horseradish peroxidase in the presence of NADH. The .OH-producing activity of horseradish peroxidase can be inhibited by inactivators of haem iron or by various O2.- and .OH scavengers. On an equimolar Fe basis, horseradish peroxidase is 1-2 orders of magnitude more active than Fe-EDTA, an inorganic catalyst of the Haber-Weiss reaction. Particularly high .OH-producing activity was found in the alkaline horseradish peroxidase isoforms and in a ligninase-type fungal peroxidase, whereas lactoperoxidase and soybean peroxidase were less active, and myeloperoxidase was inactive. Operating in the .OH-producing mode, peroxidases may be responsible for numerous destructive and toxic effects of activated oxygen reported previously.  相似文献   

14.
The xanthine oxidase reaction causes a co-oxidation of NH3 to NO2-, which was inhibitable by superoxide dismutase, catalase, hydroxyl radical scavengers, or by the chelating agents, desferrioxamine or diethylene triaminepentaacetic acid. Hydroxylamine was oxidized to NO2- much more rapidly than was NH3, and in this case superoxide dismutase or the chelating agents inhibited but catalase or the HO. scavengers did not. Hydrazine was not detectably oxidized to NO2-, and NO2- was not oxidized to NO3-, by the xanthine oxidase reaction. These results are accommodated by a reaction scheme involving (a) the metal-catalyzed production of HO. from O2- + H2O2; (b) the oxidation of H3N to H2N. by OH.; (c) the coupling of H2N. with O2- to yield peroxylamine, which hydrolyzes to hydroxylamine plus H2O2; (d) the metal-catalyzed oxidation of HO-NH2 to (Formula: see text), which couples with O2- to yield (Formula: see text), which finally dehydrates to yield NO2-.  相似文献   

15.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

16.
Xanthine oxidase suffers autoinactivation in the course of catalyzing the oxidation of acetaldehyde. When no special efforts were made to maintain a high pO2 in these reaction mixtures catalase protected the xanthine oxidase, but superoxide dismutase did not. However, when oxygen depletion was slowed or prevented by working at lower concentrations of xanthine oxidase, at lower temperatures or by vigorous agitation under an atmosphere of 100% oxygen, superoxide dismutase or catalase protected markedly when added separately and protected almost completely when added together. This result correlates with the greater production of O2-, relative to H2O2, by xanthine oxidase, at elevated pO2. Since histidine also provided some protection and the high levels of acetaldehyde used would have precluded any significant effect of OH., we conclude that singlet oxygen, or something with similar reactivity, was generated from O2- plus H2O2 and contributed significantly to the observed autoinactivation.  相似文献   

17.
The authors have compared the ability of two non-SH-containing angiotensin converting enzyme (ACE) inhibitors (enalaprilat and lisinopril) with an -SH containing ACE inhibitor (captopril) to scavenge the hydroxyl radical (OH). All three compounds were able to scavenge -OH radicals generated in free solution at approximately diffusion-controled rates (1010 M-1s-1) as established by the deoxyribose assay in the presence of EDTA. The compounds also inhibited deoxyribose degradation in reaction mixtures which did not contain EDTA but not so effectively. This later finding also suggests that they have some degree of metal-binding capability. Chemiluminescence assays of oxidation of hypoxanthine by xanthine oxidase in the presence of luminol, confirm that the three ACE inhibitors are oxygen free radical scavengers. Our results indicate that the presence of a sulphydryl group in the chemical structure of ACE inhibitors is not relevant for their oxygen free radical scavenging ability.  相似文献   

18.
Quantification of intracellular and extracellular levels and production rates of reactive oxygen species is crucial to understanding their contribution to tissue pathophysiology. We measured basal rates of oxidant production and the activity of xanthine oxidase, proposed to be a key source of O2- and H2O2, in endothelial cells. Then we examined the influence of tumor necrosis factor-alpha and lipopolysaccharide on endothelial cell oxidant metabolism, in response to the proposal that these inflammatory mediators initiate vascular injury in part by stimulating endothelial xanthine oxidase-mediated production of O2- and H2O2. We determined a basal intracellular H2O2 concentration of 32.8 +/- 10.7 pM in cultured bovine aortic endothelial cells by kinetic analysis of aminotriazole-mediated inactivation of endogenous catalase. Catalase activity was 5.72 +/- 1.61 U/mg cell protein and glutathione peroxidase activity was much lower, 8.13 +/- 3.79 mU/mg protein. Only 0.48 +/- 0.18% of total glucose metabolism occurred via the pentose phosphate pathway. The rate of extracellular H2O2 release was 75 +/- 12 pmol.min-1.mg cell protein-1. Intracellular xanthine dehydrogenase/oxidase activity determined by pterin oxidation was 2.32 +/- 0.75 microU/mg with 47.1 +/- 11.7% in the oxidase form. Intracellular purine levels of 1.19 +/- 1.04 nmol hypoxanthine/mg protein, 0.13 +/- 0.17 nmol xanthine/mg protein, and undetectable uric acid were consistent with a low activity of xanthine dehydrogenase/oxidase. Exposure of endothelial cells to 1000 U/ml tumor necrosis factor (TNF) or 1 microgram/ml lipopolysaccharide (LPS) for 1-12 h did not alter basal endothelial cell oxidant production or xanthine dehydrogenase/oxidase activity. These results do not support a casual role for H2O2 in the direct endothelial toxicity of TNF and LPS.  相似文献   

19.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

20.
The superoxide radical O2.-, whether produced by the xanthine/xanthine oxidase reaction or infused as KO2, solubilized by a crown ether in dry dimethyl sulphoxide, initiated a free-radical chain oxidation of anionic 2-nitropropane. Superoxide dismutase, but not catalase, inhibited oxidation of the nitroalkane. Xanthine oxidase suffered a syncatalytic inactivation, during the co-oxidation of 2-nitropropane, which was reversed by dialysis. Cyanide exacerbated this syncatalytic inactivation and rendered it irreversible. The frequently observed oxidations of nitroalkanes by flavoenzymes now need to be re-examined to clarify the extent to which O2.--initiated free-radical chain oxidation contributed to the overall nitroalkane oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号