首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-chain fatty acids and their acyl-CoA esters are potent inhibitors of nuclear thyroid hormone (T3) receptor in vitro. In the present study, we obtained evidence for acyl-CoA binding activity in the nuclear extract from rat liver. The activity sedimented at a position (3.5 S) identical with that of the T3 receptor, and the two activities sedimented together. Similarly, they coeluted on DEAE-Sephadex. After partial purification of the receptor, it was again inhibited strongly by acyl-CoAs. Heat stability and a partial trypsin digestion of the receptor both suggested that the action site of oleoyl-CoA overlapped the T3-binding domain of the receptor. In addition, thyroid hormone receptor β1, synthesized in vitro, bound oleoyl-CoA specifically and its T3-binding activity was inhibited. The dissociation constant for oleoyl-CoA binding to the partially purified receptor was 1.2 × 10?7 M. This value as well as its molecular size distinguished the nuclear binding sites from the cytoplasmic fatty acid/acyl-CoA binding proteins. Oleoyl-CoA had no effect on the glucocorticoid receptor, another member of the nuclear hormone-receptor superfamily. From these results, we propose that thyroid hormone receptor is a specific acyl-CoA binding protein of the cell nucleus.  相似文献   

2.
Unesterified long-chain fatty acids strongly inhibited thyroid hormone (T3) binding to nuclear receptors extracted from rat liver, kidney, spleen, brain, testis and heart. Oleic acid was the most potent inhibitor, attaining 50% inhibition at 2.8 microM. Oleic acid similarly inhibited the partially purified receptor and enhanced dissociation of the preformed T3-receptor complex. The fatty acid acted in a soluble form and in a competitive manner for the T3-binding sites, thereby reducing the affinity of the receptor for T3. The affinity of the receptor for oleic acid (Ki) was 1.0 microM. In HTC rat hepatoma cells in culture, fatty acids added to the medium reached the nucleus and inhibited nuclear T3 binding; oleic acid being the most potent. T3 binding of the cells was reversibly restored in fresh medium free of added fatty acids. Oleic acid did not affect all the T3-binding sites in the HTC cells: one form (80%) was inhibited and the other was not and these two forms were commonly present in all rat tissues examined. Thus, fatty acids inhibited the solubilized nuclear receptor as well as a class of nuclear T3-binding sites in cells in culture.  相似文献   

3.
The affinity of recombinant rat acyl-CoA binding protein (ACBP) towards acyl-CoAs was investigated using both fluorimetric analysis and isothermal titration microcalorimetry, neither of which requires the physical separation of bound and free ligand for determining the dissociation constants (K(d)). The displacement of 11-(dansylamino)undecanoyl-CoA (DAUDA-CoA) from ACBP yielded binding parameters for the competing acyl-CoAs that compared favourably with those obtained using ultra-sensitive microcalorimetric titration. The K(d) values of ACBP for oleoyl-CoA and docosahexaenoyl-CoA are 0.014 and 0.016 microM, respectively. Under identical experimental conditions, carnitine palmitoyltransferase I (CPT I) of purified rat liver mitochondria has K(d) values of 2.4 and 22.7 microM for oleoyl-CoA and docosahexaenoyl-CoA, respectively. Given that CPT I was not only present at a much lower concentration but also has an appreciably lower affinity for acyl-CoAs than ACBP, it is proposed that CPT I is capable of interacting directly with ACBP-acyl-CoA binary complexes. This is supported by the fact that the enzyme activity correlated with the concentration of ACBP-bound acyl-CoA but not the free acyl-CoA. A transfer of acyl-CoA from ACBP-acyl-CoA binary complexes to CPT I could be a result of the enzyme inducing a conformational alteration in the ACBP leading to the release of acyl-CoA.  相似文献   

4.
The acyl-CoA-dependent modulation of hepatic microsomal UDP-glucuronosyltransferase (UGT) function in rats was studied. Oleoyl- and palmitoyl-CoAs inhibited UGT activity toward 4-methylumbelliferone in the presence of Brij 58. However, acyl-CoAs enhanced UGT activity in untreated microsomes. A maximum activation of about 8-fold over the control was observed at 15 microM oleoyl-CoA, whereas 50 microM or more oleoyl-CoA had an inhibitory effect on UGT function. Medium- and long-chain acyl-CoAs also exhibited similar effects. On the basis of resistance to tryptic digestion of UGTs, oleoyl-CoA at 15 microM has no ability to change the permeability of the endoplasmic reticulum (ER) membrane, although perturbation of the membrane occurred with 50 microM oleoyl-CoA. N-Ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoic acid) abolished the oleoyl-CoA (15 microM)-dependent activation of microsomal UGT. These results suggest that: (1) acyl-CoAs play a role as an endogenous activator of UGTs, and (2) a sulfhydryl group is required for the activation of UGT by physiological concentrations of acyl-CoAs.  相似文献   

5.
Ligand binding characteristics of rat liver microsomal type I iodothyronine deiodinase were evaluated by measuring dose-response inhibition and apparent Michaelis-Menten or inhibitor constants of iodothyronine analogues to compete as substrates or inhibitors for the natural substrate L-thyroxine. These data show strong correlations with the binding requirements of hormone analogues to serum thyroxine-binding prealbumin since iodothyronine analogues with a negatively charged side chain, a negative charge or hydrogen bonding function in the 4'-position, tetraiodo ring substitution, and a skewed hormone conformation are structural features shared in common which markedly affect enzyme activity and protein binding affinity. 3,3',5'-Triiodo-L-thyronine is the most potent natural substrate (IC50 = 0.3 microM) and tetraiodothyroacetic acid is the most potent inhibitor (IC50 = 0.2 microM). Both thyroxine (T4)-5'- and T4-5-deiodination pathways are inhibited by these potent analogues, providing further evidence for a single enzyme catalyzing the rat liver microsomal deiodination reactions. These data also show that L-hormone analogues are preferentially deiodinated via the T4-5'-deiodination pathway, whereas D-analogues produce products via the T4-5-deiodination pathway. The thyroxine-binding prealbumin complex was used to model the interaction of thyroid hormones with the deiodinase active site. Computer graphic modeling of the prealbumin complex showed that only those analogues which are potent deiodinase inhibitors or substrates can be accommodated in the hormone binding site. This model suggests the design of functionally specific ligands which can modulate peripheral thyroid hormone metabolism and act as antithyroidal drugs.  相似文献   

6.
7.
Calcium-independent phospholipase A2beta (iPLA2beta) participates in numerous diverse cellular processes, such as arachidonic acid release, insulin secretion, calcium signaling, and apoptosis. Herein, we demonstrate the highly selective iPLA2beta-catalyzed hydrolysis of saturated long-chain fatty acyl-CoAs (palmitoyl-CoA approximately myristoyl-CoA > stearoyl-CoA > oleoyl-CoA approximately = arachidonoyl-CoA) present either as monomers in solution or guests in host membrane bilayers. Site-directed mutagenesis of the iPLA2beta catalytic serine (S465A) completely abolished acyl-CoA thioesterase activity, demonstrating that Ser-465 catalyzes both phospholipid and acyl-CoA hydrolysis. Remarkably, incubation of iPLA2beta with oleoyl-CoA, but not other long-chain acyl-CoAs, resulted in robust stoichiometric covalent acylation of the enzyme. Moreover, S465A mutagenesis or pretreatment of wild-type iPLA2beta with (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one unexpectedly increased acylation of the enzyme, indicating the presence of a second reactive nucleophilic residue that participates in the formation of the fatty acyl-iPLA2beta adduct. Radiolabeling of intact Sf9 cells expressing iPLA2beta with [3H]oleic acid demonstrated oleoylation of the membrane-associated enzyme. Partial trypsinolysis of oleoylated iPLA2beta and matrix-assisted laser desorption ionization mass spectrometry analysis localized the acylation site to a hydrophobic 25-kDa fragment (residues approximately 400-600) spanning the active site to the calmodulin binding domain. Intriguingly, calmodulin-Ca2+ blocked acylation of iPLA2beta by oleoyl-CoA. Remarkably, the addition of low micromolar concentrations (5 microM) of oleoyl-CoA resulted in reversal of calmodulin-mediated inhibition of iPLA2 beta phospholipase A2 activity. These results collectively identify the molecular species-specific acyl-CoA thioesterase activity of iPLA2beta, demonstrate the presence of a second active site that mediates iPLA2beta autoacylation, and identify long-chain acyl-CoAs as potential candidates mediating calcium influx factor activity.  相似文献   

8.
Molecular conjugates of hormone receptor-ligands with molecular probes or functional domains are finding diverse applications in chemical biology. Whereas many examples of hormone conjugates that target steroid hormone receptors have been reported, practical ligand conjugates that target the nuclear thyroid hormone receptor (TRbeta) are lacking. TR-targeting conjugate scaffolds based on the ligands GC-1 and NH-2 and the natural ligand triiodothyronine (T3) were synthesized and evaluated in vitro and in cellular assays. Whereas the T3 or GC-1 based conjugates did not bind TRbeta with high affinity, the NH-2 inspired fluorescein-conjugate JZ01 showed low nanomolar affinity for TRbeta and could be used as a nonradiometric probe for ligand binding. A related analogue JZ07 was a potent TR antagonist that is 13-fold selective for TRbeta over TRalpha. JZ01 localizes in the nuclei of TRbeta expressing cells and may serve as a prototype for other TR-targeting conjugates.  相似文献   

9.
10.
Equilibrium binding of T3 to nuclear matrices isolated from male rat liver occurred after incubation for 3h at 20 degrees C. Two binding sites, having KD's of 6 and 95 nM, were revealed by Scatchard analysis. T3 and Triac competed for the binding of [125I]T3 to the high affinity site whereas only T3 competed for binding to the lower affinity site. Reverse T3 (rT3) did not compete for the binding of T3 to either class of binding sites. The binding sites were highly DNAse-sensitive, and less sensitive to protease treatment. The effect of binding of T3 to nuclear matrices by ATP, DTT and EDTA indicated that the sites are dissimilar to previously identified cytosolic binding sites. The higher affinity site resembles the T3 receptor in affinity and thyroid hormone specificity. The second site represents a new class of thyroid hormone binding sites. Its role in the regulation of thyroid hormone action warrants further investigation.  相似文献   

11.
We previously reported that thyroid hormones are involved in the formation of the adult rudiment and adult-type skeleton in sea urchin larvae, as well as in the resorption of larval tissues. In the present study, to search for the presence of thyroid hormone receptor in sea urchin larvae, we performed a ligand-binding assay between radiolabeled thyroid hormones and nuclear extracts from the larvae of the sea urchin Hemicentrotus pulcherrimus. The presence of binding sites with a high affinity to thyroxine (T4) was detected in the nuclear extract, but not in the cytoplasmic fraction. The dissociation constants for the T4 binding to the nuclear extracts were estimated to be about 18 pM from the mesenchyme-blastula stage to the four-armed pluteus stage. The quantity of T4 binding sites in the nuclear extracts increased during larval development. These results suggest that the binding affinity to T4 in the nuclear extracts was caused by a putative nuclear thyroid hormone receptor in sea urchin larvae.  相似文献   

12.
Physiological concentrations of long-chain fatty acyl-CoAs have now been shown to inhibit microsomal methyl sterol oxidase. Acyl-CoA inhibition of hydroxymethylglutaryl-CoA reductase as well as methyl sterol oxidase can be either prevented or reversed by the addition of purified Z-protein (fatty acid-binding protein). Concomitantly, Z-protein addition decreases the extent of binding of radioactively labeled oleoyl-CoA to microsomal membranes. Free heme also inhibits hydroxymethylglutaryl-CoA reductase, and Z-protein reverses the extent of observed inhibition by binding heme analogous to the effect observed with acyl-CoAs. Similarly, Z-protein reverses substrate inhibition of acyl-CoA:cholesterol acyltransferase at high concentrations of acyl-CoA substrate. All these observations are consistent with the suggestion that, by binding acyl-CoAs and other enzyme effectors such as free heme, Z-protein modulates the effects of fluctuations of concentrations of major cellular metabolites. Furthermore, because the concentration of Z-protein is very low in rapidly growing hepatomas, such tumors may be very poorly buffered against the effects of acyl-CoAs, free fatty acids, heme and other effectors that may vary markedly by either altered metabolism or release of metabolites from necrotic tumor tissue.  相似文献   

13.
14.
Liver and intestinal cytosol contain abundant levels of long chain fatty acyl-CoA binding proteins such as liver fatty acid binding protein (L-FABP) and acyl-CoA binding protein (ACBP). However, the relative function and specificity of these proteins in microsomal utilization of long chain fatty acyl-CoAs (LCFA-CoAs) for sequential transacylation of glycerol-3-phosphate to form phosphatidic acid is not known. The results showed for the first time that L-FABP and ACBP both stimulated microsomal incorporation of the monounsaturated oleoyl-CoA and polyunsaturated arachidonoyl-CoA 8–10-fold and 2–3-fold, respectively. In contrast, these proteins inhibited microsomal utilization of the saturated palmitoyl-CoA by 69% and 62%, respectively. These similar effects of L-FABP and ACBP on microsomal phosphatidic acid biosynthesis were mediated primarily through the activity of glycerol-3-phosphate acyltransferase (GPAT), the rate limiting step, rather than by protecting the long chain acyl-CoAs from microsomal hydrolase activity. In fact, ACBP but not L-FABP protected long chain fatty acyl-CoAs from microsomal acyl-CoA hydrolase activity in the order: palmitoyl-CoA>oleoyl-CoA>arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   

15.
We have measured the partition of stearoyl-CoA and oleoyl-CoA between an aqueous phase and the microsomes from mouse sciatic nerves. A method of microultracentrifugation was used which allowed us to study separately the aqueous phase and the biological membranes. We observed that the partition is dependent upon the amount of acyl-CoAs and membrane proteins but seems to be independent of time. A theoretical analysis of these data allowed interpretation of the binding and release in terms of acyl-CoA surface density in the vesicles. We have also analyzed the fate of the membrane-bound acyl-CoAs. We show that, whereas the apparent partition does not seem to vary, the hydrolysis of the membrane-bound acyl-CoAs followed by the release of free fatty acids from the membrane leads to a modification of the partition of acyl-CoAs between the membrane and the aqueous phase. We propose that there is a constant partition of the aliphatic chains (acyl-CoAs + free fatty acids).  相似文献   

16.
This study was undertaken to investigate whether fatty acids inhibit the binding of T3 to the alpha 1 and beta 1 form of the thyroid hormone receptor. Fatty acids inhibited the binding of T3 to both receptor proteins isolated from a bacterial expression system. The effectiveness of inhibition depends on the chain length and degree of saturation of the fatty acids. The inhibition of T3 binding to the alpha 1 and beta 1 receptor by oleic acid is competitive in nature; the Ki value was 5.4 10(-6) M for the c-erbA alpha 1 protein and 3.3 10(-6) M for the c-erb beta 1 protein. The findings indicate a direct interaction of fatty acids with T3 receptor proteins.  相似文献   

17.
Interactions of the nuclear thyroid hormone receptor with core histones   总被引:1,自引:0,他引:1  
These studies concern the interactions of the rat liver thyroid hormone nuclear receptor with histones and factors influencing the receptor's assay and stability. Heating certain crude receptor preparations at 50 degrees C produces a selective loss of triiodothyronine (T3) but not thyroxine (T4) binding activity, whereas, with more purified preparations, such heating decreases both T3 and T4 binding. The selective T3-binding loss in crude preparations was found to be due to the simultaneous denaturation of the receptor's high-affinity hormone-binding activity for both T3 and T4 and generation of new low-affinity T4-binding sites. The fraction in which T4 binding can be activated could be separated from the receptors by Sephadex G-100 chromatography. Core histones stimulated both T3- and T4-binding activity of 6-fold-purified receptor preparations, and data from several different experimental approaches suggest that this stimulation is due to the capability of the core histones to prevent the receptor from binding to or being denatured by Sephadex G-25 assay columns. The core histones were also found to stabilize 500-fold-purified but not 6-fold-purified or crude receptor preparations. A number of other acidic or basic proteins had little or none of these stimulatory effects, whereas a few proteins (such as the insulin B chain and histone H1) did have activity, although it was less than that of the core histones. There were no significant differences between the purified core histone subfractions (H2A, H2B, H3, and H4). That core histones can interact with the thyroid hormone receptors was demonstrated more directly by the finding that the receptors bind to histone-Sepharose but not Sepharose or insulin- or ovalbumin-Sepharose columns and that this binding was blocked by core histones at concentrations suggestive of an affinity for the receptor-core histone interaction of around 3 microM at 0.15 M salt concentration. The results demonstrate the utility of the histones in the assay and stabilization of purified thyroid hormone receptors, but they fail to support our previous hypothesis of a receptor subunit where T3- but not T4-binding activity is regulated selectively by histones. However, the results indicate that histones may interact with the receptors with some degree of specificity, and they raise the possibility that the histones participate in the nuclear localization of the receptors.  相似文献   

18.
19.
It is widely believed that the adult mammalian brain is insensitiveto thyroid hormones unlike the neonatal brain which is criticallydependent on these hormones for the development of normal structureand function. Recent studies have demonstrated the presenceof limited capacity, high affinity, triiodothyronine (T3) bindingnuclear sites in tissues that are considered responsive to thyroidhormones. Furthermore, there is evidence from studies on peripheraltissues that these T3 binding sites act as true receptors ininitiating thyroid hormone action. This report examines whetherthe higher sensitivity of neonatal brain to thyroid hormonesand the purported decline in sensitivity in adulthood are relatedto changes in the concentration and affinity characteristicsof thyroid hormone receptors in rat cerebral nuclei. Analysisof Scatchard plots of in vitro T3 binding data indicate thatcerebral nuclei from adult rats contain T3 specific nuclearbinding sites at a concentration comparable to that presentduring the period when the brain is critically dependent onthe presence of thyroid hormones and exceed that in the liver,a tissue generally considered thyroid sensitive. Neonatal thyroidectomysignificantly increased the number of binding sites. The resultsshow that the apparent unresponsiveness of the cerebral cortexof adult rats to thyroid hormones is not due to the absenceor a low density of T3 nuclear binding sites. The significanceof these results is discussed.  相似文献   

20.
Thyroid hormone binding proteins of rat liver cytosol were characterized. Glutathione-S-transferases were identified among major cytosolic proteins adsorbed by thyroxine affinity matrices. The Ya and Yb subunits of the glutathione-S-transferases were also principal proteins of cytosol covalently labeled with 3,3',5-triiodo-L-thyronine (T3) or 3,3',5,5'-tetraiodo-L-thyronine (T4) by photoaffinity methods. T3 and T4, but not L-thyronine or iodinated tyrosines, were bound with high affinity to purified glutathione-S-transferases and were potent inhibitors of their enzymatic activities. These results suggest that glutathione-S-transferases have the potential to function in the intracellular binding and transport of thyroid hormones. The proteins provide a means for regulating the action and metabolism of thyroid hormones by acting as high capacity binding components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号