首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
M Serwe  F Sablitzky 《The EMBO journal》1993,12(6):2321-2327
We have assessed the importance of the immunoglobulin heavy chain (IgH) intron enhancer for recombination of variable gene segments (V, D and J) during B cell development. We generated chimeric mice with embryonic stem cells lacking the intron enhancer from one of their IgH loci. The IgH intron enhancer was substituted by a short oligonucleotide through homologous recombination using the 'Hit and Run' procedure. V(D)J recombination occurred less frequently on mutant alleles, but was not blocked completely. Quantitative polymerase chain reaction analyses demonstrated that 15-30% of the mutated loci in mature B cells were unrearranged, in striking contrast to the wild-type alleles. The remainder of the mutated loci underwent D-J (65-80%) as well as V-DJ rearrangements, although the latter were less frequent (3-6%). These results are in line with previous data which showed that the V(D)J recombination machinery is modulated through cis-regulatory elements within the intron enhancer. However, our data predict the existence of additional cis-regulatory element(s) which, together with the intron enhancer, are required to activate the V(D)J recombination machinery fully. Such cis-regulatory element(s) might function as an enhancer of recombination or as a locus control region regulating the accessibility of the IgH locus.  相似文献   

6.
During B lymphocyte development, Ig heavy and L chain genes are assembled by V(D)J recombination. Individual V, D, and J genes rearrange at very different frequencies in vivo, and the natural variation in recombination signal sequence does not account for all of these differences. Because a permissive chromatin structure is necessary for the accessibility of VH genes for VH to DJH recombination, we hypothesized that gene rearrangement frequency might be influenced by the extent of histone modifications. Indeed, we found in freshly isolated pro-B cells from muMT mice a positive correlation between the level of enrichment of VHS107 genes in the acetylated histone fractions as assayed by chromatin immunoprecipitation, and their relative rearrangement frequency in vivo. In the VH7183 family, the very frequently rearranging VH81X gene showed the highest association with acetylated histones, especially in the newborn. Together, our data show that the extent of histone modifications in pro-B cells should be considered as a mechanism by which accessibility and the rearrangement level of individual VH genes is regulated.  相似文献   

7.
8.
9.
10.
11.
12.
IgH genes are assembled during early B cell development by a series of regulated DNA recombination reactions in which DH and JH segments are first joined followed by V(H) to DJH rearrangement. Recent studies have highlighted the role of chromatin structure in the control of V(D)J recombination. In this study, we show that, in murine pro-B cell precursors, the JH segments are located within a 6-kb DNase I-sensitive chromatin domain containing acetylated histones H3 and H4, which is delimited 5' by the DQ52 promoter element and 3' by the intronic enhancer. Within this domain, the JH segments are covered by phased nucleosomes. High-resolution mapping of nucleosomes reveals that, in pro-B cells, unlike recombination refractory nonlymphoid cells, the recombination signal sequences flanking the four JH segments are located in regions of enhanced micrococcal nuclease and restriction enzyme accessibility, corresponding to either nucleosome-free regions or DNA rendered accessible within a nucleosome. These results support the idea that nucleosome remodeling provides an additional level of control in the regulation of Ig locus accessibility to recombination factors in B cell precursors.  相似文献   

13.
14.
Although V(D)J recombination is thought to be regulated by changes in the accessibility of chromatin to the recombinase machinery, the mechanisms responsible for establishing "open" chromatin are poorly understood. We performed a detailed study of the acetylation status of histones associated with 11 V(H) gene segments, their flanking regions, and various intergenic elements during B-cell development and ontogeny, when V(D)J recombination is highly regulated. Histone H4 shows higher and more-regulated acetylation than does histone H3 in the V(H) locus. In adult pro-B cells, V(H) gene segments are acetylated prior to V(D)J rearrangement, with higher acetylation associated with J(H)-distal V(H) gene segments. While large regions of the V(H) locus have similar patterns of histone acetylation, acetylation is narrowly confined to the gene segments, their flanking promoters, and recombinase signal sequence elements. Thus, histone acetylation in the V(H) locus is both locally and globally regulated. Increased histone acetylation accompanies preferential recombination of J(H)-proximal V(H) gene segments in early B-cell ontogeny, and decreased histone acetylation accompanies inhibition of V-DJ recombination in a transgenic model of immunoglobulin heavy-chain allelic exclusion. Thus, changes in histone acetylation appear to be important for both promotion and inhibition of V-DJ rearrangement during B-cell ontogeny and development.  相似文献   

15.
16.
17.
The physical parameters controlling the accessibility of antigen receptor loci to the V(D)J recombination activity are unknown. We have used minichromosome substrates to study the role that CpG methylation might play in controlling V(D)J recombination site accessibility. We find that CpG methylation decreases the V(D)J recombination of these substrates more than 100-fold. The decrease correlates with a considerable increase in resistance to endonuclease digestion of the methylated minichromosome DNA. The minichromosomes acquire resistance to both the intracellular V(D)J recombinase and exogenous endonuclease only after DNA replication. Therefore, CpG methylation specifies a chromatin structure that, upon DNA replication, is resistant to eukaryotic site-specific recombination. These findings are important to V(D)J recombination as well as to the chromatin assembly of methylated DNA during replication.  相似文献   

18.
19.
20.
The lambda-light-chain and lambda-heavy-chain variable-region genes of an anti-Rh(D) (Rh, Rhesus; D, heavy-chain diversity region) human monoclonal antibody secreted by lymphocytes transformed by the Epstein-Barr virus have been cloned and sequenced. Sequence comparison of the anti-Rh(D)mAb lambda-chain variable region with those of the other available human lambda chains revealed that it belonged to the human V lambda I (V lambda, variable region of lambda chain) subgroup. The greatest sequence similarity (80%) was observed with that of another anti-Rh antibody lambda-chain directed against the Rh(c) antigen. For the VH (VH, variable region of heavy chain) sequence, the highest similarity (86%) was observed with the germline VHG3 gene which belongs to the VHI subgroup. The expressed DH sequence of the anti-Rh(D) antibody is also of germline origin and complementarity-determining region 3 is thus produced by VH-DH and DH-JH (J, joining region) joining without recombination of multiple DH gene segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号