首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hua L  Low TY  Sze SK 《Proteomics》2006,6(2):586-591
We have developed a rapid microwave-assisted protein digestion technique based on classic acid hydrolysis reaction with 2% formic acid solution. In this mild chemical environment, proteins are hydrolyzed to peptides, which can be directly analyzed by MALDI-MS or ESI-MS without prior sample purification. Dilute formic acid cleaves proteins specifically at the C-terminal of aspartyl (Asp) residues within 10 min of exposure to microwave irradiation. By adjusting the irradiation time, we found that the extent of protein fragmentation can be controlled, as shown by the single fragmentation of myoglobin at the C-terminal of any of the Asp residues. The efficacy and simplicity of this technique for protein identification are demonstrated by the peptide mass maps of in-gel digested myoglobin and BSA, as well as proteins isolated from Escherichia coli K12 cells.  相似文献   

2.
The stable trioxatriangulenium ion (TOTA) has previously been shown to bind to and photooxidize duplex DNA, leading to cleavage at G residues, particularly 5'-GG-3' repeats. Telomeric DNA consists of G-rich sequences that may exist in either duplex or G-quadruplex forms. We have employed electrospray ionization mass spectrometry (ESI-MS) to investigate the interactions between TOTA and duplex DNA or G-quadruplex DNA. A variety of duplex decamer oligodeoxynucleotides form complexes with TOTA that can be detected by ESI-MS, and the stoichiometry and fragmentation patterns observed are commensurate with an intercalative binding mode. TOTA also forms complexes with four-stranded and hairpin-dimer G-quadruplex oligodeoxynucleotides that can be detected by ESI-MS. Both the stoichiometry and the fragmentation patterns observed by ESI-MS are different than those observed for G-tetrad end-stacking binding ligands. We have carried out (1)H NMR titrations of a four-stranded G-quadruplex in the presence of TOTA. Addition of up to 1 equiv of TOTA is accompanied by pronounced upfield shifts of the G-tetrad imino proton resonances in the NMR, which is similar to the effect observed for G-tetrad end-stacking ligands. At higher ratios of added TOTA, there is evidence for additional binding modes. Duplex DNA containing either human telomeric repeats (T(2)AG(3))(4) or the Tetrahymena telomeric repeats (T(2)G(4))(4) are readily photooxidized by TOTA, the major sites of oxidation being the central guanine residues in each telomeric repeat. These telomeric repeats were incorporated into duplex/quadruplex chimeras in which the repeats adopt a G-quadruplex structure. Analysis by denaturing polyacrylamide gel electrophoresis reveals significantly less TOTA photocleavage of these quadruplex telomeric repeats when compared to the duplex repeats.  相似文献   

3.
Mass spectrometry has played an integral role in the identification of proteins and their post-translational modifications (PTM). However, analysis of some PTMs, such as phosphorylation, sulfonation, and glycosylation, is difficult with collision-activated dissociation (CAD) since the modification is labile and preferentially lost over peptide backbone fragmentation, resulting in little to no peptide sequence information. The presence of multiple basic residues also makes peptides exceptionally difficult to sequence by conventional CAD mass spectrometry. Here we review the utility of electron transfer dissociation (ETD) mass spectrometry for sequence analysis of post-translationally modified and/or highly basic peptides. Phosphorylated, sulfonated, glycosylated, nitrosylated, disulfide bonded, methylated, acetylated, and highly basic peptides have been analyzed by CAD and ETD mass spectrometry. CAD fragmentation typically produced spectra showing limited peptide backbone fragmentation. However, when these peptides were fragmented using ETD, peptide backbone fragmentation produced a complete or almost complete series of ions and thus extensive peptide sequence information. In addition, labile PTMs remained intact. These examples illustrate the utility of ETD as an advantageous tool in proteomic research by readily identifying peptides resistant to analysis by CAD. A further benefit is the ability to analyze larger, non-tryptic peptides, allowing for the detection of multiple PTMs within the context of one another.  相似文献   

4.
5.
Presentation of peptides derived from endogenous proteins by class I major histocompatibility complex molecules is essential both for immunological self-tolerance and induction of cytotoxic T-cell responses against intracellular parasites. Despite frequent and diverse post-translational modification of eukaryotic cell proteins, very few class I-bound peptides with post-translationally modified residues are known. Here we describe a natural dodecamer ligand of HLA-B39 (B*3910) derived from an RNA-binding nucleoprotein that carried N(G),N(G)-dimethyl-Arg. Although common among RNA-binding proteins, this modification was not previously known among natural class I ligands. The sequence of this peptide was determined by Edman degradation and electrospray ion trap mass spectrometry. The fragmentation pattern of the dimethyl-Arg side chain observed with this latter technique allowed us to unambiguously assign the isomeric form of the modified residue. The post-translationally modified ligand was a prominent component (1-2%) of the B*3910-bound peptide repertoire. The dimethyl-Arg residue was located in a central position of the peptide, amenable to interacting with T-cell receptors, and most other residues in the middle region of the peptide were Gly. These structural features strongly suggest that the post-translationally modified residue may have a major influence on the antigenic properties of this natural ligand.  相似文献   

6.
Saxl RL  Reston J  Nie Z  Kalman TI  Maley F 《Biochemistry》2003,42(15):4544-4551
Evidence is presented that 5-imidazolylpropynyl-2'-deoxyuridine 5'-monophosphate (IP-dUMP) is a mechanism-based, irreversible inactivator of Escherichia coli thymidylate synthase (TS), which covalently modifies Tyr94 at the active site of the enzyme. The inactivation of TS was time and concentration dependent and did not require the folate cofactor. Due to the rapidity of the inactivation process, accurate kinetic parameters could be determined only in the presence of saturating concentrations (1000K(M)) of the competing substrate, dUMP. Under these conditions, a K(I) of 0.36 +/- 0.09 microM and an inactivation rate constant (k(inact)) of 0.53 +/- 0.15 min(-1) were obtained from Kitz-Wilson plots. Electrospray ionization-mass spectrometry (ESI-MS) determined a 412 amu mass increase of TS after inhibition by IP-dUMP with no mass difference being detected for the TS mutants Tyr94Phe or Cys146Ala, thus indicating the importance of these residues for complex formation. The change in WT-TS mass was consistent with covalent modification by IP-dUMP, which was confirmed by proteolytic digestion of the modified protein followed by ESI-MS. By these means, a 43-residue trypsin peptide (residues 54-96), a 16-residue endoAspN peptide (residues 89-104), and an 8-residue endoAspN/endoLysC peptide (residues 89-96), each containing the IP-dUMP adduct, were observed. MS/MS analysis of the IP-dUMP-endoAspN peptide identified a modified 3-residue daughter ion, YGK (residues 94-96). A mechanistic scheme requiring the participation of Cys146 is proposed for the covalent modification of IP-dUMP by Tyr94, which, unlike an earlier proposal [Kalman, T. I., Nie, Z., and Kamat, A. (2001) Nucleosides Nucleotides Nucleic Acids 20, 869-871], does not require the release of imidazole for the activation of the inhibitor.  相似文献   

7.
Recombinant human interferon-gamma and chloramphenicol acetyltransferase I were isolated from two Escherichia coli strains, E. coli LE329 and E. coli XL1-blue and characterized by electrospray ionization mass spectrometry (ESI-MS). The ESI-MS analysis showed higher masses in comparison with the theoretically calculated for both proteins as well as unexpected molecular heterogeneity. The ESI-MS spectral patterns of the proteins depended on the host strain used and were more heterogenous for the proteins isolated from E. coli LE392. One of the proteins (human interferon-gamma obtained from E. coli XL1-blue) was further subjected to BrCN cleavage. The ESI-MS analysis of the polypeptide mixture revealed shift in the molecular mass for two peptides including the last 26 amino acids of the human interferon-gamma molecule.  相似文献   

8.
The mass spectrometric analysis of the immunodominant epitope region (273-284) of herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) showed a favoured fission at the Asp-Pro peptide bond. The fast atom bombardment collision induced dissociation (FAB-CID) study of closely related X-Pro peptides documented that neither the length nor the amino acid composition of the peptide has a significant influence on this preferential cleavage. At the same time the DP bond proved to be sensitive to acidic conditions in the course of peptide synthesis. These observations prompted us to compare the chemical and mass spectrometric stability of a new set of nonapeptides related to the 273-284 epitope region of gD, i.e. SALLEDPVG and SALLEXPVG peptides, where X = A, K, I, S, F, E or D, respectively. The chemical stability of these peptides during acidic hydrolysis was investigated by electrospray ionization mass spectrometry (ESI-MS) and the products were identified by ESI-MS and on-line high performance liquid chromatography-mass spectrometry (HPLC-MS). The mass spectrometric fragmentation and bond stability of the untreated peptide samples were also studied using ESI-MS and liquid secondary ion mass spectrometry (LSIMS). Both the chemical hydrolysis and the mass spectrometric fragmentation showed that the Asp-Pro bond could easily be cleaved, while the KP bond proved to be stable under both circumstances. On the other hand, the XP bond (X = A, I, S, F or E) fragmented easily under the mass spectrometric conditions, but was not sensitive to the acidolysis.  相似文献   

9.
In the past mass spectrometry has been limited to the study of small, stable molecules, however, with the emergence of electrospray ionization mass spectrometry (ESI-MS) large biomolecules as well as non-covalent biomolecular complexes can be studied. ESI-MS has been used to study non-covalent interactions involving proteins with metals, ligands, peptides, oligonucleotides, as well as other proteins. Although complementary to other well-established techniques such as circular dichroism and fluorescence spectroscopy, ESI-MS offers some advantages in speed, sensitivity, and directness particularly in the determination of the stoichiometry of the complex. One major advantage is the ability of ESI-MS to provide multiple signals each arising from a distinct population within the sample. In this review I will discuss some of the different types of non-covalent biomolecular interactions that have been studied using ESI-MS, highlighting examples which show the efficacy of using ESI-MS to probe the structure of biomolecular complexes.  相似文献   

10.
Phosphatidylethanolamines (PEs) react with HOCl under formation of the mono- and dichloramines which are easily converted into secondary products (nitriles and imines). PEs with unsaturated acyl residues also give chlorhydrines. The aim of this study was to investigate whether all products may be detected by electrospray ionization (ESI) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Results indicated that chloramines and imines are nearly exclusively detectable by ESI-MS, whereas all other products are detectable by both MALDI and ESI-MS. Therefore, ESI-MS is superior for the detection of chlorinated products of PEs.  相似文献   

11.
Integral membrane proteins have not been readily amenable to the general methods developed for mass spectrometric (or internal Edman degradation) analysis of soluble proteins. We present here a sample preparation method and high performance liquid chromatography (HPLC) separation system which permits online HPLC-electrospray ionization mass spectrometry (ESI-MS) and -tandem mass spectrometry (MS/MS) analysis of cyanogen bromide cleavage fragments of integral membrane proteins. This method has been applied to wild type (WT) bacteriorhodopsin (bR), cysteine containing mutants of bR, and the prototypical G-protein coupled receptor, rhodopsin (Rh). In the described method, the protein is reduced and the cysteine residues pyridylethylated prior to separating the protein from the membrane. Following delipidation, the pyridylethylated protein is cleaved with cyanogen bromide. The cleavage fragments are separated by reversed phase HPLC using an isopropanol/acetonitrile/aqueous TFA solvent system and the effluent peptides analyzed online with a Finnigan LCQ Ion Trap Mass Spectrometer. With the exception of single amino acid fragments and the glycosylated fragment of Rh, which is observable by matrix assisted laser desorption ionization (MALDI)-MS, this system permits analysis of the entire protein in a single HPLC run. This methodology will enable pursuit of chemical modification and crosslinking studies designed to probe the three dimensional structures and functional conformational changes in these proteins. The approach should also be generally applicable to analysis of other integral membrane proteins.  相似文献   

12.
Scorpion venom are complex mixtures of peptides, known to cause impairment of ion-channel function in biological membranes. This report describes the separation of approximately 60 different components by high performance liquid chromatography and the characterization by Edman degradation and mass spectrometry of 26 peptides from the soluble venom of the Amazonian scorpion Tityus cambridgei. One of these peptides, named Tc48a, was fully characterized. It contains 65 amino acid residues, the C-terminal residue is amidated and it affects Na(+)-channels with a K(d) of about 82 nM. Furthermore, this report shows the thermo-instability of scorpion toxins subjected to electron spray ionization-mass spectrometry (ESI-MS). When a proline residue is located near the N-terminal region of the toxin, not stabilized by disulfide bridges, artificial components are generated by the mass spectrometer conditions, due to the cleavage of the peptide bond at the proline positions. This phenomenon was confirmed by using four model proteins (variable regions of immunoglobulins) studied by ESI-MS and matrix assisted laser desorption ionization-time of flight (MALDI-TOF)/MS.  相似文献   

13.
Reversible phosphorylation is one of the most important posttranslational modifications of cellular proteins. Mass spectrometry is a widely used technique in the characterization of phosphorylated proteins and peptides. Similar to nonmodified peptides, sequence information for phosphopeptides digested from proteins can be obtained by tandem mass analysis using either electrospray ionization or matrix assisted laser desorption/ionization (MALDI) mass spectrometry. However, the facile loss of neutral phosphoric acid (H3PO4) or HPO3 from precursor ions and fragment ions hampers the precise determination of phosphorylation site, particularly if more than one potential phosphorylation site or concensus sequence is present in a given tryptic peptide. Here, we investigated the fragmentation of phosphorylated peptides under laser-induced dissociation (LID) using a MALDI-time-of-flight mass spectrometer with a curved-field reflectron. Our data demonstrated that intact fragments bearing phosphorylated residues were produced from all tested peptides that contain at least one and up to four phosphorylation sites at serine, threonine, or tyrosine residues. In addition, the LID of phosphopeptides derivatized by N-terminal sulfonation yields simplified MS/MS spectra, suggesting the combination of these two types of spectra could provide an effective approach to the characterization of proteins modified by phosphorylation.  相似文献   

14.
Xylo-oligosaccharides with degrees of polymerisation 5-13, formed by partial acid hydrolysis from an extract representative of olive pulp glucuronoxylans (GX), were analysed by electrospray ionisation mass spectrometry (ESI-MS), both in positive and negative modes. The positive spectrum showed the presence of xylo-oligosaccharides in the mass range between m/z 500 and 1500 corresponding to singly [M+Na](+) charged ions of neutral (Xyl(7-9)) and acidic xylo-oligosaccharides (Xyl(5-9)MeGlcA), and doubly [M+2Na](2+) charged ions of Xyl(9-13) and Xyl(7-11)MeGlcA. Ammonium adducts [M+NH(4)](+) were also observed for Xyl(5-9)MeGlcA. The negative spectra showed the contribution of ions in the mass range between m/z 600 and 1400, ascribed to the deprotonated molecules [M-H](-) of Xyl(3-9)MeGlcA. Tandem mass spectrometry (MS/MS) of the major ions observed in the MS spectra was performed. The MS/MS spectra of the [M+Na](+) adducts showed the loss of MeGlcA residues as the major fragmentation pathway and glycosidic fragment ions of Xyl(n) and Xyl(n)MeGlcA structures. The MS/MS spectra of the [M+NH(4)](+) adducts suggests the occurrence of isomers of Xyl(5-9)MeGlcA oligosaccharides with the MeGlcA residue at the reducing end and at the non-reducing end of the molecules, although other structural isomers can also occur. Both glycosidic bond and cross-ring cleavages in the MS/MS spectra of the [M-H](-) ion suggest the occurrence of Xyl(3-9)MeGlcA with the substituting group at the reducing end position of the xylose backbone, as the main fragmentation ions. The results obtained by ESI-MS/MS, both in positive and negative modes, of Xyl(7-13)- and Xyl(5-11)MeGlcA, allow to identify fragmentation patterns of the structural isomers with MeGlcA linked to the terminal xylosyl residues of the oligosaccharides. The occurrence of these higher molecular weight oligosaccharides with a low substitution pattern allows to infer a scatter and random distribution of MeGlcA along the xylan backbone of olive pulp.  相似文献   

15.
Microperoxidase-8, Fe(III)MP-8, the heme octapeptide obtained by horse heart cytochrome c digestion, was studied in the presence of H(2)O(2). A modified form of the catalyst was isolated by HPLC and showed a UV/visible spectrum similar to that of Fe(III)MP-8. ESI-MS measurements revealed a 16 Da increase in molecular mass for the modified catalyst when compared to Fe(III)MP-8, suggesting the insertion of an oxygen atom. ESI-MS(2) fragmentation measurements point at oxygen incorporation on the His18 residue of the octapeptide of the modified catalyst. Comparison of the (1)H NMR chemical shifts of the methyl protons of the porphyrin ring of Fe(III)MP-8 and the modified catalyst shows a large shift for especially the 3-methyl and 5-methyl resonances, whereas the other (1)H NMR chemical shifts are almost unaffected. These observations can best be ascribed to a reorientation of the histidine axial ligand. The latter is suggested to be the consequence of an oxygen insertion, possibly on the imidazole ring of His18, thereby corroborating the data obtained by ESI-MS(2). (1)H NMR NOE difference measurements on Fe(III)MP-8 and on the modified catalyst supported the assignment of the H(delta)2 and H(epsilon)1 protons of the His18 imidazole ring. The ring amine proton H(delta)1 could not be detected in both forms of the catalyst. For Fe(III)MP-8 this absence of the H(delta)1 resonance can be ascribed to fast H/D exchange. For the modified catalyst the NMR data are not contradictory, with an oxygen insertion on position delta1 of the His18 imidazole ring with a fast H/D exchanging hydroxyl proton. Together these data converge in suggesting the H(2)O(2) modified catalyst bears a hydroxylated His18 axial ligand. The mechanism that could underlie Fe(III)MP-8 axial histidine hydroxylation is further discussed.  相似文献   

16.
Continuous segments of amino acid sequence information as long as 41 residues have been deduced by interpretation of matrix-assisted laser desorption/ionization-generated ion signals dominated by Cn fragmentation within the ion source of a linear time-of-flight mass spectrometer utilizing delayed ion extraction. The technique has been applied successively to five proteins of mass 12.2 kDa to 18.3 kDa, yielding segments of continuous sequence as long as 41 residues without the need for prior proteolytic fragmentation. Intact crosslinks such as disulfides or heme linkages interrupt the generation of these data.  相似文献   

17.
The Na(+)/galactose cotransporter (vSGLT) of Vibrio parahaemolyticus, tagged with C-terminal hexahistidine, has been purified to apparent homogeneity by Ni(2+) affinity chromatography and gel filtration. Resequencing the vSGLT gene identified an important correction: the N terminus constitutes an additional 13 functionally essential residues. The mass of His-tagged vSGLT expressed under its native promoter, as determined by electrospray ionization-mass spectrometry (ESI-MS), verifies these 13 residues in wild-type vSGLT. A fusion protein of vSGLT and green fluorescent protein, comprising a mass of over 90 kDa, was also successfully analyzed by ESI-MS. Reconstitution of purified vSGLT yields proteoliposomes active in Na(+)-dependent galactose uptake, with sugar preferences (galactose > glucose > fucose) reflecting those of wild-type vSGLT in vivo. Substrates are transported with apparent 1:1 stoichiometry and apparent K(m) values of 129 mm (Na(+)) and 158 microm (galactose). Freeze-fracture electron microscopy of functional proteoliposomes shows intramembrane particles of a size consistent with vSGLT existing as a monomer. We conclude that vSGLT is a suitable model for the study of sugar cotransporter mechanisms and structure, with potential applicability to the larger SGLT family of important sodium:solute cotransporters. It is further demonstrated that ESI-MS is a powerful tool for the study of proteomics of membrane transporters.  相似文献   

18.
The complete covalent structure of a novel boar DQH sperm surface protein resistant to many classical procedures of enzymatic fragmentation was determined. The relative molecular mass of the major form of this protein determined by ESI-MS and MALDI-MS was 13,065.2+/-1.0 and 13,065.1, respectively. However, additional peaks differing by 162 Da (i.e., minus hexose), 365 Da (i.e., minus hexose and N-acetylhexosamine), 146 Da (i.e., plus deoxyhexose), and 291 Da (i.e., plus sialic acid) indicated the heterogeneity due to differences in glycosylation. The complete covalent structure of the protein was determined using automated Edman degradation, MALDI-MS, and post-source decay (PSD) MALDI-MS, and shown to consist of N-terminal O-glycosylated peptide followed by two fibronectin type II repeats. The carbohydrates are O-glycosidically linked to threonine 10, as confirmed by PSD MALDI-MS of the isolated N-terminal glycopeptide. Eight cysteine residues of the protein form four disulfide bridges, the positions of which were assigned from MALDI-MS and Edman degradation data. We conclude that mass spectral techniques provide an indispensable tool for the detailed analysis of the covalent structure of proteins, especially those that are refractory to standard approaches of protein chemistry.  相似文献   

19.
Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.  相似文献   

20.
Here we report a new method for oxosteroid identification utilizing “tandem mass tag hydrazine” (TMTH) carbonyl-reactive derivatisation reagent. TMTH is a reagent with a chargeable tertiary amino group attached through a linker to a carbonyl-reactive hydrazine group. Thirty oxosteroids were analysed after derivatisation with TMTH by electrospray ionization mass spectrometry (ESI-MS) and were found to give high ion-currents compared to underivatised molecules. ESI-tandem mass spectrometry (MS/MS) analysis of the derivatives yielded characteristic fragmentation patterns with specific mass reporter ions derived from the TMT group. A shotgun ESI-MS method incorporating TMTH derivatisation was applied to a urine sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号