共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
In this article, we summarize Arabidopsis genes encoding ubiquitin, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (E2s) and an additional selected set of proteins related to ubiquitylation. We emphasize comparisons to components from Saccharomyces cerevisiae, with occasional reference to animals. Among the E1 and E2s, Arabidopsis usually has two to four probable orthologs to one yeast gene. Also, Arabidopsis has genes with no likely ortholog in yeast, although they often have potential orthologs in animals. The large number of components with known function in ubiquitylation indicates that this process plays a complex role in cellular physiology. 相似文献
6.
7.
The toxicity associated with accumulation of reactive oxygen species (ROS) has led to the evolution of various defense strategies to overcome oxidative stress, including autophagy. This pathway is involved in the removal and degradation of damaged mitochondria and oxidized proteins. At low levels, however, ROS act as signal transducers in various intracellular pathways. In a recent study we described the role of ROS as signaling molecules in starvation-induced autophagy. We showed that starvation stimulates formation of ROS, specifically H(2)O(2), in the mitochondria. Furthermore, we identified the cysteine protease HsAtg4 as a direct target for oxidation by H(2)O(2), and specified a cysteine residue located near the HsAtg4 catalytic site as critical for this regulation. Here we focus on Atg4, the target of regulation, and discuss possible mechanisms for the regulation of this enzyme in the autophagic process. 相似文献
8.
RAS proteins are monomeric GTPases that act as binary molecular switches to regulate a wide range of cellular processes. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which regulate the activation state of RAS without covalently modifying it. By contrast, post-translational modifications (PTMs) of RAS proteins direct them to various cellular membranes and, in some cases, modulate GTP-GDP exchange. Important RAS PTMs include the constitutive and irreversible remodelling of its carboxy-terminal CAAX motif by farnesylation, proteolysis and methylation, reversible palmitoylation, and conditional modifications, including phosphorylation, peptidyl-prolyl isomerisation, monoubiquitylation, diubiquitylation, nitrosylation, ADP ribosylation and glucosylation. 相似文献
9.
蛋白质翻译后修饰是调节蛋白质生物学功能的关键步骤之一,是蛋白质动态反应和相互作用的一个重要分子基础,同时,它也是细胞信号网络调控的重要靶点.目前,蛋白质翻译后修饰已经成为国际上蛋白质研究的一个极其重要的热点.在原核生物生命活动中,蛋白质的翻译后修饰具有十分重要的作用,如参与细胞信号传导、物质的代谢、蛋白质的降解、致病微生物的致病过程等.综述了经典原核生物蛋白质翻译后修饰的种类、机制和功能,同时介绍了最近发现的原核生物的全局性乙酰化修饰以及结核分枝杆菌中类泛素化修饰. 相似文献
10.
Of the 20 ribosomally coded amino acid residues, lysine is the most frequently post-translationally modified, which has important functional and regulatory consequences. Here we report the identification and verification of a previously unreported form of protein post-translational modification (PTM): lysine succinylation. The succinyllysine residue was initially identified by mass spectrometry and protein sequence alignment. The identified succinyllysine peptides derived from in vivo proteins were verified by western blot analysis, in vivo labeling with isotopic succinate, MS/MS and HPLC coelution of their synthetic counterparts. We further show that lysine succinylation is evolutionarily conserved and that this PTM responds to different physiological conditions. Our study also implies that succinyl-CoA might be a cofactor for lysine succinylation. Given the apparent high abundance of lysine succinylation and the significant structural changes induced by this PTM, it is expected that lysine succinylation has important cellular functions. 相似文献
11.
12.
The post-translational processing of peptides plays a key role in conferring biological activity on those peptides. Recently, ribosomally made peptides that contain D-amino acids at specific positions have been discovered in microorganisms as well as in vertebrates and invertebrates. This points to yet another strategy of circumventing stereochemical limitations imposed by the genetic code and conveying biological activity to otherwise inert molecules. 相似文献
13.
Poly ADP-ribosylation of proteins. Processivity of a post-translational modification 总被引:1,自引:0,他引:1
The nuclear enzyme poly(ADP-ribose) polymerase (EC 2.4.2.30) participates in DNA excision repair by post-translational selfmodification ("automodification") and the modification of other chromatin proteins ("heteromodification") with ADP-ribose polymers. We have studied the molecular mechanism of these reactions in a reconstituted in vitro system. After activation by DNA, poly(ADP-ribose) polymerase produces polymers with a distinct size pattern. These polymers are attached to a small subfraction of enzyme molecules. As the reaction progresses, more enzyme molecules are recruited for modification with an identical polymer size pattern. Likewise, the auto- and heteromodification reaction in nucleosomal core particles involves the consecutive addition of a highly conserved polymer size pattern to the acceptor proteins. Thus, a highly conserved polymer size pattern may constitute the molecular signal priming chromatin proteins for a role in DNA excision repair in vivo. The priming reaction is processive. 相似文献
14.
van Dijk J Miro J Strub JM Lacroix B van Dorsselaer A Edde B Janke C 《The Journal of biological chemistry》2008,283(7):3915-3922
Polyglutamylation is a post-translational modification that generates lateral acidic side chains on proteins by sequential addition of glutamate amino acids. This modification was first discovered on tubulins, and it is important for several microtubule functions. Besides tubulins, only the nucleosome assembly proteins NAP1 and NAP2 have been shown to be polyglutamylated. Here, using a proteomic approach, we identify a large number of putative substrates for polyglutamylation in HeLa cells. By analyzing a selection of these putative substrates, we show that several of them can serve as in vitro substrates for two of the recently discovered polyglutamylases, TTLL4 and TTLL5. We further show that TTLL4 is the main polyglutamylase enzyme present in HeLa cells and that new substrates of polyglutamylation are indeed modified by TTLL4 in a cellular context. No clear consensus polyglutamylation site could be defined from the primary sequence of the here-identified new substrates of polyglutamylation. However, we demonstrate that glutamate-rich stretches are important for a protein to become polyglutamylated. Most of the newly identified substrates of polyglutamylation are nucleocytoplasmic shuttling proteins, including many chromatin-binding proteins. Our work reveals that polyglutamylation is a much more widespread post-translational modification than initially thought and thus that it might be a regulator of many cellular processes. 相似文献
15.
S-nitrosylation, the covalent attachment of a nitric oxide moiety to a cysteine thiol, is now established as a key post-translational modification in animals. This process has been shown to regulate the function of a wide variety of regulatory, structural, and metabolic proteins. The emerging evidence now suggests that S-nitrosylation may also have a central function in plant biology. 相似文献
16.
Post-translational modifications of amino acids can be used to generate novel cofactors capable of chemistries inaccessible to conventional amino acid side chains. The biosynthesis of these sites often requires one or more enzyme or protein accessory factors, the functions of which are quite diverse and often difficult to isolate in cases where multiple enzymes are involved. Herein is described the current knowledge of the biosynthesis of urease and nitrile hydratase metal centers, pyrroloquinoline quinone, hypusine, and tryptophan tryptophylquinone cofactors along with the most recent work elucidating the functions of individual accessory factors in these systems. These examples showcase the breadth and diversity of this continually expanding field. 相似文献
17.
Biotin is a coenzyme essential to all life forms. The vitamin has biological activity only when covalently attached to certain key metabolic enzymes. Most organisms have only one enzyme for attachment of biotin to other proteins and the sequences of these proteins and their substrate proteins are strongly conserved throughout nature. Structures of both the biotin ligase and the biotin carrier protein domain from Escherichia coli have been determined. These, together with mutational analyses of biotinylated proteins, are beginning to elucidate the exceptional specificity of this protein modification. 相似文献
18.
Methionine is a sulfur-containing residue found in most proteins which are particularly susceptible to oxidation. Although methionine oxidation causes protein damage, it can in some cases activate protein function. Enzymatic systems reducing oxidized methionine have evolved in most bacterial species and methionine oxidation proves to be a reversible post-translational modification regulating protein activity. In this review, we inspect recent examples of methionine oxidation provoking protein loss and gain of function. We further speculate on the role of methionine oxidation as a multilayer endogenous antioxidant system and consider its potential consequences for bacterial virulence. 相似文献
19.
Astier J Rasul S Koen E Manzoor H Besson-Bard A Lamotte O Jeandroz S Durner J Lindermayr C Wendehenne D 《Plant science》2011,181(5):527-533
Increasing evidences support the assumption that nitric oxide (NO) acts as a physiological mediator in plants. Understanding its pleiotropic effects requires a deep analysis of the molecular mechanisms underlying its mode of action. In the recent years, efforts have been made in the identification of plant proteins modified by NO at the post-translational level, notably by S-nitrosylation. This reversible process involves the formation of a covalent bond between NO and reactive cysteine residues. This research has now born fruits and numerous proteins regulated by S-nitrosylation have been identified and characterized. This review describes the basic principle of S-nitrosylation as well as the Biotin Switch Technique and its recent adaptations allowing the identification of S-nitrosylated proteins in physiological contexts. The impact of S-nitrosylation on the structure/function of selected proteins is further discussed. 相似文献
20.
Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety 总被引:4,自引:5,他引:4
Peter Doig Niamh Kinsella Patricia Guerry & Trevor J. Trust 《Molecular microbiology》1996,19(2):379-387
The flagellins of Campylobacter spp. differ antigenically. In variants of C. coli strain VC167, two antigenic flagellin types determined by sero-specific antibodies have been described (termed T1 and T2). Post-translational modification has been suggested to be responsible for T1 and T2 epitopes, and, using mild periodate treatment and biotin hydrazide labelling, flagellin from both VC167-T1 and T2 were shown to be glycosylated. Glycosylation was also shown to be present on other Campylobacter flagellins. The ability to label all Campylobacter flagellins examined with the lectin LFA demonstrated the presence of a terminal sialic acid moiety. Furthermore, mild periodate treatment of the flagellins of VC167 eliminated reactivity with T1 and T2 specific antibodies LAH1 and LAH2, respectively, and LFA could also compete with LAH1 and LAH2 antibodies for binding to their respective flagellins. These data implicate terminal sialic acid as part of the LAH strain-specific epitopes. However, using mutants in genes affecting LAH serorecognition of flagellin it was demonstrated that sialic acid alone is not the LAH epitope. Rather, the epitope(s) is complex, probably involving multiple glycosyl and/or amino acid residues. 相似文献