首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell‐surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour‐associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.  相似文献   

2.
3.
c-Jun N-terminal kinase (JNK), or stress-activated protein kinase, is an important member of the mitogen-activated protein kinase superfamily, the members of which are readily activated by many environmental stimuli. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important groups of free radicals that are capable of eliciting direct damaging effects or acting as critical intermediate signaling molecules, leading to oxidative and nitrosative stress and a series of biological consequences. Recently there has been an increasing amount of research interest focusing on the regulatory role of JNK activation in ROS-and RNS-induced cellular responses. In this review we will first summarize and discuss some recent findings regarding the signaling mechanisms of ROS-or RNS-mediated JNK activation. Second, we will talk about the role of JNK in ROS-or RNS-mediated cell death (both apoptosis and necrosis). Finally, we will analyze the emerging evidence for the involvement of ROS and RNS as mediators in tumor necrosis factor alpha-induced apoptosis. Taken together, the accumulating knowledge about the ROS/RNS-induced JNK signaling pathway has greatly advanced our understanding of the complex processes deciding the cellular responses to environmental stress.  相似文献   

4.
5.
Fas ligand (FasL), perforin, TNF-alpha, IL-1, and NO have been considered as effector molecule(s) leading to beta cell death in autoimmune diabetes. However, the real culprit(s) in beta cell destruction have long been elusive, despite intense investigation. We and others have demonstrated that FasL is not a major effector molecule in autoimmune diabetes, and previous inability to transfer diabetes to Fas-deficient nonobese diabetic (NOD)-lpr mice was due to constitutive FasL expression on lymphocytes from these mice. Here, we identified IFN-gamma/TNF-alpha synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of IFN-gamma and TNF-alpha, but neither cytokine alone, induced classical caspase-dependent apoptosis in insulinoma and pancreatic islet cells. IFN-gamma treatment conferred susceptibility to TNF-alpha-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation followed by IFN regulatory factor (IRF)-1 induction. IRF-1 played a central role in IFN-gamma/TNF-alpha-induced cytotoxicity because inhibition of IRF-1 induction by antisense oligonucleotides blocked IFN-gamma/TNF-alpha-induced cytotoxicity, and transfection of IRF-1 rendered insulinoma cells susceptible to TNF-alpha-induced cytotoxicity. STAT1 and IRF-1 were expressed in pancreatic islets of diabetic NOD mice and colocalized with apoptotic cells. Moreover, anti-TNF-alpha Ab inhibited the development of diabetes after adoptive transfer. Taken together, our results indicate that IFN-gamma/TNF-alpha synergism is responsible for autoimmune diabetes in vivo as well as beta cell apoptosis in vitro and suggest a novel signal transduction in IFN-gamma/TNF-alpha synergism that may have relevance in other autoimmune diseases and synergistic anti-tumor effects of the two cytokines.  相似文献   

6.
Mitochondrial Ca(2+) homeostasis is today at the center of wide interest in the scientific community because of its role both in the modulation of numerous physiological responses and because of its involvement in cell death. In this review, we briefly summarize a few basic features of mitochondrial Ca(2+) handling in vitro and within living cells, and its involvement in the modulation of Ca(2+)-dependent signaling. We then discuss the role of mitochondrial Ca(2+) in the control of apoptotic death, focusing in particular on the effects of pro- and anti-apoptotic proteins of the Bcl-2 family. Finally, the potential involvement of Ca(2+) and mitochondria in the development of two diseases, Ullrich muscular dystrophy and familial Alzheimer's disease, is briefly discussed.  相似文献   

7.
Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Sialyltransferases that attach sialic acid residues to the glycan chains in the process of their initial synthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence also suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that neuraminidase 1 (NEU1), well known for its lysosomal catabolic function, can be also targeted to the cell surface and assume the previously unrecognized role as a structural and functional modulator of cellular receptors.  相似文献   

8.
9.
10.
Calcium is a key signaling molecule in beta-lapachone-mediated cell death   总被引:5,自引:0,他引:5  
beta-Lapachone (beta-Lap) triggers apoptosis in a number of human breast and prostate cancer cell lines through a unique apoptotic pathway that is dependent upon NQO1, a two-electron reductase. Downstream signaling pathway(s) that initiate apoptosis following treatment with beta-Lap have not been elucidated. Since calpain activation was suspected in beta-Lap-mediated apoptosis, we examined alterations in Ca(2+) homeostasis using NQO1-expressing MCF-7 cells. beta-Lap-exposed MCF-7 cells exhibited an early increase in intracellular cytosolic Ca(2+), from endoplasmic reticulum Ca(2+) stores, comparable to thapsigargin exposures. 1,2-Bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, an intracellular Ca(2+) chelator, blocked early increases in Ca(2+) levels and inhibited beta-Lap-mediated mitochondrial membrane depolarization, intracellular ATP depletion, specific and unique substrate proteolysis, and apoptosis. The extracellular Ca(2+) chelator, EGTA, inhibited later apoptotic end points (observed >8 h, e.g. substrate proteolysis and DNA fragmentation), suggesting that later execution events were triggered by Ca(2+) influxes from the extracellular milieu. Collectively, these data suggest a critical, but not sole, role for Ca(2+) in the NQO1-dependent cell death pathway initiated by beta-Lap. Use of beta-Lap to trigger an apparently novel, calpain-like-mediated apoptotic cell death could be useful for breast and prostate cancer therapy.  相似文献   

11.
Galectin-8 functions as a matricellular modulator of cell adhesion   总被引:10,自引:0,他引:10  
The interaction of cells with the extracellular matrix regulates cell adhesion and motility. Here we demonstrate that different cell types adhere and spread when cultured in serum-free medium on immobilized galectin-8, a mammalian beta-galactoside-binding protein. At maximal doses, galectin-8 is equipotent to fibronectin in promoting cell adhesion and spreading. Cell adhesion to immobilized galectin-8 is mediated by sugar-protein interactions with integrins, and galectin-8 triggers integrin-mediated signaling cascades including Tyr phosphorylation of focal adhesion kinase and paxillin. Cell adhesion is potentiated in the presence of Mn(2+), whereas it is interrupted in the presence of soluble galectin-8, integrin beta(1) inhibitory antibodies, EDTA, or thiodigalactoside but not by RGD peptides. Furthermore, cells readily adhere onto immobilized monoclonal galectin-8 antibodies, which are equipotent to integrin antibodies in promoting cell adhesion. Cell adhesion to immobilized galectin-8 is partially inhibited by serum proteins, suggesting that complex formation between immobilized galectin-8 and serum components generates a matrix that is less supportive of cell adhesion. Accordingly, cell motility on immobilized galectin-8 readily takes place in the presence of serum. Truncation of the C-terminal half of galectin-8, including one of its two carbohydrate recognition domains, largely abolishes its ability to modulate cell adhesion, indicating that both carbohydrate recognition domains are required to maintain a functional form of galectin-8. Collectively, our findings implicate galectin-8 as a physiological modulator of cell adhesion. When immobilized, it functions as a matrix protein equipotent to fibronectin in promoting cell adhesion by ligation and clustering of cell surface integrin receptors. In contrast, when present in excess as a soluble ligand, galectin-8 (like fibronectin) forms a complex with integrins that negatively regulates cell adhesion. Because of its dual effects on the adhesive properties of the cells and its association with fibronectin, galectin-8 might be considered a novel type of matricellular protein.  相似文献   

12.
Martín CM  Guzmán EC 《DNA Repair》2011,10(1):94-101
Thymine deprivation results in the loss of viability in cells from bacteria to eukaryotes. Numerous studies have identified a variety of molecular processes and cellular responses associated with thymineless death (TLD). It has been observed that TLD occurs in actively growing cells, and DNA damage and DNA recombination structures have been associated with cells undergoing TLD. We measured the loss of viability in thymine-starved cells differing in the number of overlapping replication cycles (n), and we found that the magnitude of TLD correlates with the number of replication forks. By using pulsed field gel electrophoresis (PFGE), we determined the proportion of linear DNA (DSBs) and the amount of DNA remaining in the well after treatment with XbaI (nmDNA) under thymine starvation in the absence or presence of both rifampicin (suppressing TLD) and hydroxyurea (maintaining TLD). Our results indicate that DSBs and nmDNA are induced by thymine starvation, but they do not correlate with the lethality observed in the presence of the drugs. We asked whether TLD was related to chromosomal DNA initiation. DNA labeling experiments and flow cytometric analyses showed that new initiation events were induced under thymine starvation. These new DNA replication initiation events were inhibited in the presence of rifampicin but not in the presence of hydroxyurea, indicating that TLD correlates with the induction of new initiation events in Escherichia coli. In support of this finding, cells carrying a deletion of the datA site, in which DNA initiation is allowed in the presence of rifampicin, underwent TLD in the presence of rifampicin. We propose that thymineless-induced DNA initiation generates a fraction of DNA damage and/or nmDNA at origins that is critical for TLD. Our model provides new elements to be considered when testing mammalian chemotherapies that are based on the inhibition of thymidylate synthetase.  相似文献   

13.
14.
15.
16.
17.

Background  

We study the selection dynamics in a heterogeneous spatial colony of cells. We use two spatial generalizations of the Moran process, which include cell divisions, death and migration. In the first model, migration is included explicitly as movement to a proximal location. In the second, migration is implicit, through the varied ability of cell types to place their offspring a distance away, in response to another cell's death.  相似文献   

18.
Caspases: key players in programmed cell death   总被引:20,自引:0,他引:20  
Research in apoptosis has established a central role for caspases. The recent determination of structures of caspase-1, caspase-3 and caspase-8, together with biochemical studies, has greatly enhanced our understanding of the structure, function and specificity of these enzymes. This provides a basis for the further elucidation of the biological role of caspases and a guide to the design of selective inhibitors to treat caspase-mediated diseases.  相似文献   

19.
Angiotensin II activates the Jak-STAT pathway via the AT(1) receptor. We studied two mutant AT(1) receptors, termed M5 and M6, that contain Y to F substitutions for the tyrosine residues naturally found in the third intracellular loop and the carboxyl terminus. After binding ligand, both the M5 and M6 AT(1) receptors trigger STAT1 tyrosine phosphorylation equivalent to that observed with the wild type receptor, indicating that angiotensin II-mediated phosphorylation of STAT1 is independent of these receptor tyrosine residues. In response to angiotensin II, Jak2 autophosphorylates on tyrosine, and Jak2 and STAT1 physically associate, a process that depends on the SH2 domain of STAT1 in vitro. Evaluation of the wild type, M5, and M6 AT(1) receptors showed that angiotensin II-dependent AT(1) receptor-Jak2-STAT1 complex formation is dependent on catalytically active Jak2, not on the receptor tyrosine residues in the third intracellular loop and carboxyl tail. Immunodepletion of Jak2 virtually eliminated the ligand-dependent binding of STAT1 to the AT(1) receptor. These data indicate that the association of STAT1 with the AT(1) receptor is not strictly bimolecular; it requires Jak2 as both a STAT1 kinase and as a molecular bridge linking STAT1 to the AT(1) receptor.  相似文献   

20.
Cell death induction by tumor necrosis factor has been an intensively studied area for the last two decades. Although it may appear that the skeleton should have been picked clean by now, new secrets about tumor necrosis factor death signaling are still being uncovered. In particular, the recent evidence that ubiquitination of the death kinase receptor-interacting protein 1 regulates its participation in apoptotic and necrotic cell death is opening up unexplored avenues in the catacombs of tumor necrosis factor death signaling. In this minireview, we focus on two major cell-death checkpoints that determine whether receptor-interacting protein 1 functions as a pro-survival or pro-death molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号