首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Ide  M Kimura  M Arai  G Funatsu 《FEBS letters》1991,284(2):161-164
The complete amino acid sequence of ribonuclease (RNase MC) from the seeds of bitter gourd (Momordica charantia) has been determined. This has been achieved by the sequence analysis of peptides derived by enzymatic digestion with trypsin, lysylendopeptidase, and chymotrypsin, as well as by chemical cleavage with cyanogen bromide. The protein contains 191 amino acid residues and has a calculated molecular mass of 21,259 Da. Comparison of this sequence with sequences of the fungal RNases, RNase T2, and RNase Rh, revealed that there are highly conserved residues at positions 32-38 (TXHGLWP) and 81-92 (FWXHEWXKHGTC). Furthermore, the sequence of RNase MC was found to be homologous to those of Nicotiana alata S-glycoproteins involved in self-incompatibility sharing 41% identical residues.  相似文献   

2.
The complete amino acid sequence of bovine milk angiogenin   总被引:9,自引:0,他引:9  
The amino acid sequence of angiogenin isolated from bovine milk was deduced by gas-phase sequencing of the protein and its fragments. The protein contains 125 residues and has a calculated molecular mass of 14,577 Da. The sequence is highly homologous (65% identity) to the sequence of human angiogenin, most of the differences being the result of conservative replacements. Like human angiogenin, the bovine protein is also homologous to bovine pancreatic RNase A (34% identity) and the three major active site residues known to be involved in the catalytic process, His-14, Lys-41 and His-115, are conserved. When tested against conventional substrates for RNase A activity, bovine angiogenin displays the same selective ribonucleolytic activity as human angiogenin. The sequence of bovine angiogenin contains the cell recognition tripeptide Arg-Gly-Asp which is not present in the human protein.  相似文献   

3.
Primary structure of a non-secretory ribonuclease from bovine kidney   总被引:2,自引:0,他引:2  
The primary structure of a non-secretory ribonuclease from bovine kidney (RNase K2) was determined. The sequence determined was VPKGLTKARWFEIQHIQPRLLQCNKAMSGV NNYTQHCKPENTFLHNVFQDVTAVCDMPNIICKNGRHNCHQSPKPVNLTQCNFIAGRYPDC RYHDDAQYKFFIVACDPPQKTDPPYHLVPVHLDKYF. The sequence homology with human non-secretory RNase, bovine pancreatic RNase, and human secretory RNase are 46, 34.6, and 32.3%, respectively. The bovine kidney RNase has two inserted sequences, a tripeptide at the N-terminus and a heptapeptide between the 113th and 114th position of bovine pancreatic RNase; on the other hand, it is deleted of the hexapeptide consisting of the 17th to the 22nd amino acid residue of RNase A. The amino acid residues assumed to be the constituents of the bovine pancreatic RNase active site are all conserved except F120 (L in RNase K2).  相似文献   

4.
5.
The complete amino acid sequence of gladiolus bulb chitinase-a (GBC-a) was determined. First the tryptic peptides from GBC-a after it was reduced and S-carboxymethylated were sequenced and then the peptides were further studied by chemical cleavage of the enzyme. GBC-a consisted of 274 amino acid residues and had a molecular mass of 30,714 Da. Two consensus sequences essential for chitinase activity by plant class III chitinases were conserved in GBC-a, although its sequence similarity with plant class III chitinases was less than 20%. Sequence comparison of GBC-a with sequences of other proteins in a protein identification resource (PIR) showed that the GBC-a sequence was 33% similar to that of narbonin, a seed storage 2S globulin from narbon beans.  相似文献   

6.
The primary structure of an extracellular ribonuclease (RNase LE) from Pi-depleted media of cultured cells of Lycopersicon esculentum L. cv. Lukullus has been determined. This was carried out by analysis of peptides isolated after enzymatic and chemical cleavage of the reduced and S-ethylpyridylated protein. RNase LE consists of 205 amino acid residues and has a molecular mass of 22,666 Da and an isoelectric point of 4.24. The enzyme contains 10 half-cystines. There are no potential N-glycosylation sites in the sequence. The sequence of RNase LE is homologous with those of self-incompatibility proteins of several higher plant species and with those of a number of fungal RNases. The sequence similarity with the family of self-incompatibility proteins is greater than with the fungal RNases, suggesting that the self-incompatibility proteins arose from ancestral RNase by gene duplication after the divergence of higher plants and fungi. Two pentapeptide sequences, i.e. HGLWP and KHGTC (or KHGSC), are present at identical positions in all the aligned proteins, suggesting that they contribute to the active site.  相似文献   

7.
Primary structure of nuclease P1 from Penicillium citrinum   总被引:3,自引:0,他引:3  
The primary structure of nuclease P1, which cleaves both RNA and single-stranded DNA, from Penicillium citrinum was elucidated. The complete amino acid sequence consisting of 270 residues was determined by analysis of peptides obtained by digestion with Achromobacter protease I of the reduced and S-aminoethylated protein and by digestion with Staphylococcus aureus V8 protease of the reduced and S-carboxymethylated protein. Four half-cystine residues were assigned to Cys72-Cys217 and Cys80-Cys85. N-Glycosylated asparagine residues were identified at positions 92, 138, 184 and 197. Fast-atom-bombardment and laser-ionization MS were successfully used to confirm the determined amino acid sequences of peptides and to estimate the molecular mass of this glycoprotein having heterogenous sugar moieties, respectively. Comparison of the amino acid sequence of nuclease P1 with other nucleases revealed that the protein has a high degree of sequence identity (50%) with nuclease S1 from Aspergillus oryzae. The His-Phe-Xaa-Asp-Ala sequence (positions 60-64) is similar to the sequence (His-Phe-Asp-Ala) involving the active-site His119 of bovine pancreatic RNase A, and the Pro-Leu-His sequence (positions 124-126) is identical with the sequence involving the active-site His134 of porcine pancreatic DNase I.  相似文献   

8.
In the course of our studies on the structural diversity of the isoforms of cardiac fatty acid-binding proteins (cFABPs), a cardiac-type FABP from the matrix of bovine heart mitochondria was purified to homogeneity and obtained as a single 15-kDa protein with an isoelectric point of 4.9. The primary structures of this protein and of the two isoforms isolated from the cytosol (pI4.9-cFABP and pI 5.1-cFABP) were investigated by means of plasma desorption mass spectrometry and sequencing of peptides. All three proteins are amino-terminally blocked with an acetyl group and shown to be colinear with the sequence deduced from a cDNA clone for bovine heart fatty acid-binding protein (Billich, S., Wissel, T., Kratzin, H., Hahn, U., Hagenhoff, B., Lezius, A. G., and Spener, F. (1988) Eur. J. Biochem. 175, 549-556) except for the residue at position 98. This residue is demonstrated to be the molecular origin of bovine cFABP isoforms since pI 5.1-cFABP contains Asn98 in accordance with the sequence derived from the cDNA, whereas in pI 4.9-cFABP, this position is occupied by Asp98. Moreover, mitochondrial FABP is identical to pI 4.9-cFABP. Molecular masses of pI 4.9-cFABP (14,679 +/- 10 Da) and pI 5.1-cFABP (14,678 +/- 20 Da) determined by plasma desorption mass spectrometry coincide with that calculated from the cDNA (14,673 Da). Hence, residues linked to these proteins by posttranslational modification are not present, and the Asn-Asp exchange is the sole origin of heterogeneity of mitochondrial and cytosolic fatty acid-binding proteins from bovine heart.  相似文献   

9.
Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver   总被引:1,自引:0,他引:1  
A pyrimidine base-specific ribonuclease was purified from bullfrog (Rana catesbeiana) liver by means of CM-cellulose column chromatography and affinity chromatography on heparin-Sepharose CL-6B, which gave single band on SDS-slab electrophoresis. The primary structure of the bullfrog liver RNase was determined. It consisted of 111 amino acid residues, including 8 half-cystine residues. From the sequence, it was concluded that three disulfide bridges in RNase A were conserved in the bullfrog RNase, that a disulfide bridge in RNase A [Cys65-Cys126 (RNase A numbering)] was deleted, and that a new disulfide bridge was created in the C-terminal part of the enzyme. In this frog RNase, the amino acid residues thought to be essential for catalysis in bovine pancreatic RNase A were conserved except for Asp121 (RNase A numbering). The sequence homology of the bullfrog liver RNase with bovine pancreatic RNase A was 30.6%. The sequence of bullfrog liver RNase was very similar to those of lectins obtained from bullfrog egg by Titani et al. [Biochemistry (1988) 26, 2189-2194] and R. japonica egg by Kamiya et al. [Seikagaku (in Japanese) (1989) 60, 733; and personal communication from Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., and Titani, K.]. The sequence homology between the bullfrog liver RNase and the two lectins was 70.2 and 64.8%, respectively.  相似文献   

10.
Two isoforms of the erythrocyte histone H1.a were identified in two conservative flocks of Rhode Island Red chickens and six conservative flocks of ducks. The H1.a1 and H1.a2 isoforms formed three phenotypes (a1, a2 and a1a2) and were electrophoretically similar in the two species. The frequency of phenotype and histone H1.a allele occurrence varied within the genetic groups of birds, but the relatively rare allele a 2 was only detected in chicken and duck strains with colored feathers. Using mass spectrometry, we established that the difference between the measured masses of the duck H1.a isoforms was 156 Da. Since this value corresponds to the mass of the arginine residue alone or to the combined mass of the valine and glycine residues, we believe that the polymorphism of duck histone H1.a might have originated from sequence variation. A mass difference of 1 Da observed between chicken H1.a isoforms corresponded well to the previously detected Glu/Lys substitution (0.9414 Da) at position 117.  相似文献   

11.
The complete primary structure of a base non-specific and adenylic acid preferential RNase (RNase M) from Aspergillus saitoi was determined. The sequence was determined by analysis of the peptides generated by digestion of heat-denatured RNase M with lysylendopeptidase, and the peptides generated from RCM RNase M by digestion with staphylococcal V8 protease or chemical cleavage with BrCN. It consisted of 238 amino acid residues and carbohydrate moiety attached to the 74th asparagine residue. The molecular weight of the protein moiety deduced from the sequence was 26,596. The locations of 10 half cystine residues are almost superimposable on those of RNase Rh from Rhizopus niveus and RNase T2 from Aspergillus oryzae which have similar base specificity. The homology between RNase M and RNase Rh and RNase T2 amounted to 97 and 160 amino acid residues, respectively. The amino acid sequences conserved in the three RNases are concentrated around the three histidine residues, which are supposed to form part of the active sites of these RNases.  相似文献   

12.
Two types of linker subunits (linkers 1 and 2) of the extracellular hemoglobin of Tylorrhynchus heterochaetus have been isolated as disulfide-linked homodimers by C18 reverse-phase chromatography. These subunits constituted 6 and 13%, respectively, of total protein area on the chromatogram. The complete amino acid sequences of linkers 1 and 2 were determined by automated Edman sequencing of the peptides derived by digestions with lysyl endopeptidase, trypsin, chymotrypsin, Staphylococcus aureus V8 protease, pepsin, and endoproteinase Asp-N. The linker 1 consisted of 253 amino acid residues (the calculated molecular mass, 28,200 Da), while the linker 2 consisted of 236 residues (26,316 Da). The two chains showed 27% sequence identity. The amino acid sequences of Tylorrhynchus linkers 1 and 2 also showed 23-27% homology with the recently determined sequence of a linker chain of Lamellibrachia hemoglobin (Suzuki, T., Takagi, T., and Ohta, S. (1990) J. Biol. Chem. 265, 1551-1555). In the three linker chains, half-cystine residues were highly conserved; 8 out of 13 residues are identical, suggesting that such residues would contribute to the formation of intrachain disulfide bonds essential for the protein folding of the linker polypeptides. Based on the exact molecular masses of the linker and the heme-containing subunits, the molar ratios estimated for the subunits and the minimum molecular weights per 1 mol of heme, a model is proposed for the subunit structure of the Tylorrhynchus hemoglobin, consisting of 216 polypeptide chains, 192 heme-containing chains, and 24 linker chains.  相似文献   

13.
Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae   总被引:12,自引:0,他引:12  
The amino acid sequence of ribonuclease T2 (RNase T2) from Aspergillus oryzae has been determined. This has been achieved by analyzing peptides obtained by digestions with Achromobacter lyticus protease I, Staphylococcus aureus V8 protease, and alpha-chymotrypsin of two large cyanogen bromide peptides derived from the reduced and S-carboxymethylated or S-aminoethylated protein. Digestion with A. lyticus protease I was successfully used to degrade the N-terminal half of the S-aminoethylated protein at cysteine residues. RNase T2 is a glycoprotein consisting of 239 amino acid residues with a relative molecular mass of 29,155. The sugar content is 7.9% (by mass). Three glycosylation sites were determined at Asns 15, 76 and 239. Apparently RNase T2 has a very low degree of sequence similarity with RNase T1, but a considerable similarity is observed around the amino acid residues involved in substrate recognition and binding in RNase T1. These similar residues may be important for the catalytic activity of RNase T2.  相似文献   

14.
Phylogenetic analyses of secretory ribonucleases or RNases 1 have shown that gene duplication events, giving rise to three paralogous genes (pancreatic, seminal and brain RNase), occurred during the evolution of ancestral ruminants. A higher number of paralogous sequences are present in chevrotain (Tragulus javanicus), the earliest diverged taxon within the ruminants. Two pancreatic RNase sequences were identified, one encoding the pancreatic enzyme, the other encoding a pseudogene. The identity of the pancreatic enzyme was confirmed by isolation of the protein and N-terminal sequence analysis. It is the most acidic pancreatic ribonuclease identified so far. Formation of the mature enzyme requires cleavage by signal peptidase of a peptide bond between two glutamic acid residues. The seminal-type RNase gene shows features of a pseudogene, like orthologous genes in other ruminants investigated with the exception of the bovine species. The brain-type RNase gene of chevrotain is expressed in brain tissue. A hybrid gene with a pancreatic-type N-terminal and a brain-type C-terminal sequence has been identified but nothing is known about its expression. Phylogenetic analysis of RNase 1 sequences of six ruminant, three other artiodactyl and two whale species support previous findings that two gene duplications occurred in a ruminant ancestor. Three distinct groups of pancreatic, seminal-type and brain-type RNases have been identified and within each group the chevrotain sequence it the first to diverge. In taxa with duplications of the RNase gene (ruminants and camels) the gene evolved at twice as fast than in taxa in which only one gene could be demonstrated; in ruminants there was an approximately fourfold increase directly after the duplications and then a slowing in evolutionary rate.  相似文献   

15.
Three novel peptides designated as PMM1, PMM2, and PMM3 were isolated and characterized from the venom of the social wasp Polistes major major, one of the most common wasps in the Dominican Republic. By Edman degradation, and MALDI-TOF and ESI-QTOF mass spectrometry, the primary sequences of these peptides were established as follows: PMM1, H-Lys-Arg-Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH (1357.77 Da); PMM2, H-Ile-Asn-Trp-Lys-Lys-Ile-Ala-Ser-Ile-Gly-Lys-Glu-Val-Leu-Lys-Ala-Leu-NH2 (1909.19 Da); and PMM3, H-Phe-Leu-Ser-Ala-Leu-Leu-Gly-Met-Leu-Lys-Asn-Leu-NH2 (1317.78 Da). The suggested sequences were confirmed by MS analysis of peptide fragments obtained by enzymatic digestion. The peptide PMM1 is a lysyl-arginyl-Thr(6)-bradykinine that belongs to the wasp kinins group. The sequence of the PMM2 peptide is unique; it resembles somewhat the tetradecapeptide amides of the mastoparan group; however, the chain is extended by three additional amino acid residues. The sequence of PMM3 dodecapeptide is homologous to the peptides of the wasp chemotactic group.  相似文献   

16.
The amino acid sequence of tauropine dehydrogenase (EC 1.5.1.23) from the polychaete Arabella iricolor was determined by automated sequencing of fragments obtained by cleavage with lysyl endopeptidase, endoproteinase Glu-C, and cyanogen bromide. The purified enzyme contained two isoforms that differ only in the 41st amino acid residue (Thr or Ile). Although the sequence contained eight Cys residues, intrachain disulfide bonds were not found. Two possible N-linked glycosylation sites occur in the sequences, but the enzyme does not appear to contain bound carbohydrates. Based on these data, the two isoforms of Arabella tauropine dehydrogenase are simple proteins consisted of 396 amino acid residues with calculated molecular masses of 43,085.7 Da (Thr41 isoform) and 43,097.8 Da (Ile41 isoform).  相似文献   

17.
The complete amino acid sequence of ribosomal protein L2 from the moderate thermophile Bacillus stearothermophilus has been determined. This has been achieved by the sequence analysis of peptides derived by enzymatic digestion with Staphylococcus aureus protease, trypsin and chymotrypsin, as well as by chemical cleavage with o-iodosobenzoic acid. The protein contains 275 amino acid residues and has a calculated molecular mass of 30201 Da. Comparison of this sequence with sequences of the corresponding proteins from Escherichia coli and from spinach and tobacco chloroplasts reveals that 60% of the residues of protein L2 from B. stearothermophilus are identical to those of the protein from E. coli and 45% are identical to those found in the two chloroplast proteins. There are extended regions of totally conserved sequence at positions 54-58 (GGGHK), 81-86 (EYDPNR), and 224-230 (MNPVDHP) in all four proteins.  相似文献   

18.
Gäde G  Simek P  Marco HG 《Peptides》2007,28(7):1359-1367
Two novel octapeptide members of the AKH/RPCH family have been identified from the corpora cardiaca (CC) of two species of water bugs. The giant water bug Lethocerus indicus (family: Belostomatidae) contains a peptide code-named Letin-AKH with the sequence pGlu-Val-Asn-Phe-Ser-Pro-Tyr-Trp amide, and the water scorpion Nepa cinerea (family: Nepidae) has the peptide code-named Nepci-AKH with the sequence pGlu-Leu/Ile-Asn-Phe-Ser-Ser-Gly-Trp amide. The sequences were deduced from the multiple MS(N) electrospray mass data from crude CC extracts. Synthetic peptides were made and co-elution on reversed-phase high performance liquid chromatography (RP-HPLC) with the natural peptide from crude gland extract confirmed the accuracy of the deduced sequence for Letin-AKH and demonstrated that Nepci-AKH contains a Leu residue at position 2 and not an Ile residue. A previously characterized member of the AKH/RPCH family was identified in the stick water scorpion Ranatra linearis by mass spectrometry: Grybi-AKH (pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp amide) has the same mass (919 Da) as Nepci-AKH and differs in two positions from Nepci-AKH (residues 2 and 6). The apparent function of the peptides is to achieve lipid mobilization in the species under investigation; indications for this came from conspecific bioassays using the appropriate synthetic peptides for injecting into the insects. This function is very likely linked to dispersal flight metabolism of water bugs. Swimming activity in N. cinerea also results in an increase in lipid concentration in the hemolymph.  相似文献   

19.
Profilin is a small G-actin-binding protein, the amino acid sequence of which was previously reported for calf, human, Acanthamoeba and yeast. Here the amino acid sequences of three profilins obtained from eggs of two species of Echinoidea, Clypeaster japonicus (order, Clypeasteroida) and Anthocidaris crassispina (order, Echinoida), and plasmodium of Physarum polycephalum were determined. Two echinoid profilins were composed of 139 amino acid residues, N-termini were acylated and the molecular mass was calculated to be 14.6 kDa, slightly larger than that of 13 kDa estimated by SDS/PAGE [Mabuchi, I. & Hosoya, H. (1982) Biomed. Res. 3, 465-476]. On the other hand, Physarum profilin was composed of 124 amino acid residues, the N-terminus was acylated, and the calculated molecular mass was 13132 Da. The sequences of C. japonicus and A. crassispina profilins were homologous (84% identical). However, the similarity of these profilins with those form other organisms was low. The sequence of Physarum profilin was homologous with Acanthamoeba profilin isoforms (51% identical) and with yeast profilin (42% identical), but not with other profilins. The relatively conservative sequence of profilins from yeast, Physarum, Acanthamoeba, echinoid eggs and mammalian cells was found in the N-terminal region, which was suggested to be a common actin-binding region. The C-terminal region was also conserved, although to a lesser extent than the N-terminal region.  相似文献   

20.
The amino acid sequence of the alpha-subunit of the gonadotropins, lutropin and follitropin from bullfrog, Rana catesbeiana, has been determined. The alpha-subunit was identified in both hormones by the amino acid composition and ovulation activity of lutropin in the Xenopus ovary, by means of reconstituted hormones in various combinations. The amino acid sequences of two identical alpha-subunits from lutropin and follitropin were determined or deduced by different strategies. The alpha-subunit of those gonadotropins have 97 amino acid residues, the longest among the known alpha-subunits of gonadotropins, and one arginine insertion at position 29. Ten cysteine residues and two sugar-chain binding sites at Asn57 and Asn83 are completely conserved among the species. The molecular mass of this subunit is 11,026 Da not including the sugar chains. The bullfrog alpha-subunit has approximately 70% sequence identity with mammalian alpha-subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号