首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified and characterized a 12th subfamily of vertebrate annexins by systematic analysis of the primary structure, chromosomal mapping, and molecular evolution of unique cDNA and protein sequences from human and mouse. Distinctive features included rare expression, a codon deletion in conserved repeat 3, and an unusual ablation of the type II calcium-binding sites in tetrad core repeats 1, 3, and 4. The paralogy of novel annexin A10 (following revised nomenclature) was confirmed by FISH-mapping human ANXA10 to chromosome 4q33 and genetic linkage mapping mouse Anxa10 to midchromosome 8. Phylogenetic analysis established that the 5' and 3' halves of the annexin A6 octad are more closely related to annexins A5 and A10, respectively, than they are to each other. Molecular date estimates, paralogy linkage maps between human chromosomes 4 and 5, and annexin structural considerations led to the proposal that annexins A5 and A10 may have been the direct progenitors of annexin A6 octad formation via chromosomal duplication during the genome expansion in early chordates.  相似文献   

2.
3.
Initial human genome sequence analysis has revealed large segments of nearly identical sequence in particular chromosomal regions. The recent origin of these segments and their abundance (approximately 5%) has challenged investigators to elucidate their underlying mechanism and role in primate genome evolution. Although the precise fraction is unknown, some of these duplicated segments have recently been shown to be associated with rapid gene innovation and chromosomal rearrangement in the genomes of man and the great apes.  相似文献   

4.

Background  

Olfactory Receptors (ORs) form the largest multigene family in vertebrates. Their evolution and their expansion in the vertebrate genomes was the subject of many studies. In this paper we apply a motif-based approach to this problem in order to uncover evolutionary characteristics.  相似文献   

5.
Background and Aims Banana genomes harbour numerous copies of viral sequences derived from banana streak viruses (BSVs) – dsDNA viruses belonging to the family Caulimoviridae. These viral integrants (eBSVs) are mostly defective, probably as a result of ‘pseudogenization’ driven by host genome evolution. However, some can give rise to infection by releasing a functional viral genome following abiotic stresses. These distinct infective eBSVs correspond to the three main widespread BSV species (BSOLV, BSGFV and BSIMV), fully described within the Musa balbisiana B genomes of the seedy diploid ‘Pisang Klutuk Wulung’ (PKW).Methods We characterize eBSV distribution among a Musa sampling including seedy BB diploids and interspecific hybrids with Musa acuminata exhibiting different levels of ploidy for the B genome (ABB, AAB, AB). We used representative samples of the two areas of sympatry between M. acuminata and M. balbisiana species representing the native area of the most widely cultivated AAB cultivars (in India and in East Asia, ranging from the Philippines to New Guinea). Seventy-seven accessions were characterized using eBSV-related PCR markers and Southern hybridization approaches. We coded both sets of results to create a common dissimilarity matrix with which to interpret eBSV distribution.Key Results We propose a Musa phylogeny driven by the M. balbisiana genome based on a dendrogram resulting from a joint neighbour-joining analysis of the three BSV species, showing for the first time lineages between BB and ABB/AAB hybrids. eBSVs appear to be relevant phylogenetic markers that can illustrate the M. balbisiana phylogeography story.Conclusion The theoretical implications of this study for further elucidation of the historical and geographical process of Musa domestication are numerous. Discovery of banana plants with B genome non-infective for eBSV opens the way to the introduction of new genitors in programmes of genetic banana improvement.  相似文献   

6.
Many large and economically important plant groups (e.g. Brassicaceae, Poaceae, Asteraceae, Fabaceae and Solanaceae) have had ancient whole genome duplications (WGDs) occurring near or at the time of their origins, suggesting that WGD contributed to the origin of novel key traits and drove species diversification. However, these large clades show phylogenetic asymmetries with a species-rich crown group and a species-poor sister clade, suggesting significant 'lag-times' between WGDs and radiations. The species-poor sister groups share many key traits, but are often restricted to the hypothesized center of origin for the larger clade. Thus, the ultimate success of the crown group does not only involve the WGD and novel key traits, but largely subsequent evolutionary phenomena including later migration events, changing environmental conditions and/or differential extinction rates.  相似文献   

7.
Achieving a better comprehension of the evolution of species has always been an important matter for evolutionary biologists. The deuterostome phylogeny has been described for many years, and three phyla are distinguishable: Echinodermata (including sea stars, sea urchins, etc...), Hemichordata (including acorn worms and pterobranchs), and Chordata (including urochordates, cephalochordates and extant vertebrates). Inside the Chordata phylum, the position of vertebrate species is quite unanimously accepted. Nonetheless, the position of urochordates in regard with vertebrates is still the subject of debate, and has even been suggested by some authors to be a separate phylum from cephalochordates and vertebrates. It was also the case for agnathans species -myxines and hagfish- for which phylogenetic evidence was recently given for a controversial monophyly. This raises the following question: which one of the cephalochordata or urochordata is the sister group of vertebrates and what are their relationships? In the present work, we analyzed 82 protein families presenting homologs between urochordata and other deuterostomes and focused on two points: 1) testing accurately the position of urochordata and cephalochordata phyla in regard with vertebrates as well as chordates monophyly, 2) performing an estimation of the rate of gene loss in the Ciona intestinalis genome. We showed that the urochordate phyla is the vertebrate sister group and that gene loss played a major role in structuring the urochordate genome.  相似文献   

8.
DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. Availability: DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree  相似文献   

9.
Chaperonins are oligomeric protein-folding complexes which are divided into two distantly related structural classes. Group I chaperonins (called GroEL/cpn60/hsp60) are found in bacteria and eukaryotic organelles, while group II chaperonins are present in archaea and the cytoplasm of eukaryotes (called CCT/TriC). While archaea possess one to three chaperonin subunit-encoding genes, eight distinct CCT gene families (paralogs) have been characterized in eukaryotes. We are interested in determining when during eukaryotic evolution the multiple gene duplications producing the CCT subunits occurred. We describe the sequence and phylogenetic analysis of five CCT genes from TRICHOMONAS: vaginalis and seven from GIARDIA: lamblia, representatives of amitochondriate protist lineages thought to have diverged early from other eukaryotes. Our data show that the gene duplications producing the eight CCT paralogs took place prior to the organismal divergence of TRICHOMONAS: and GIARDIA: from other eukaryotes. Thus, these divergent protists likely possess completely hetero-oligomeric CCT complexes like those in yeast and mammalian cells. No close phylogenetic relationship between the archaeal chaperonins and specific CCT subunits was observed, suggesting that none of the CCT gene duplications predate the divergence of archaea and eukaryotes. The duplications producing the CCTdelta and CCTepsilon subunits, as well as CCTalpha, CCTbeta, and CCTeta, are the most recent in the CCT gene family. Our analyses show significant differences in the rates of evolution of archaeal chaperonins compared with the eukaryotic CCTs, as well as among the different CCT subunits themselves. We discuss these results in light of current views on the origin, evolution, and function of CCT complexes.  相似文献   

10.
11.

Aim

To develop a causal understanding of the drivers of Species distribution model (SDM) performance.

Location

United Kingdom (UK).

Methods

We measured the accuracy and variance of SDMs fitted for 518 species of invertebrate and plant in the UK. Our measure of variance reflects variation among replicate model fits, and taxon experts assessed model accuracy. Using directed acyclic graphs, we developed a causal model depicting plausible effects of explanatory variables (e.g. species' prevalence, sample size) on SDM accuracy and variance and quantified those effects using a multilevel piecewise path model.

Results

According to our model, sample size and niche completeness (proportion of a species' niche covered by sampling) directly affect SDM accuracy and variance. Prevalence and range completeness have indirect effects mediated by sample size. Challenging conventional wisdom, we found that the effect of prevalence on SDM accuracy is positive. This reflects the facts that sample size has a positive effect on accuracy and larger sample sizes are possible for widespread species. It is possible, however, that the omission of an unobserved confounder biased this effect. Previous studies, which reported negative correlations between prevalence and SDM accuracy, conditioned on sample size.

Main conclusions

Our model explicates the causal basis of previously reported correlations between SDM performance and species/data characteristics. It also suggests that niche completeness has similarly large effects on SDM accuracy and variance as sample size. Analysts should consider niche completeness, or proxies thereof, in addition to sample size when deciding whether modelling is worthwhile.  相似文献   

12.
We have investigated the evolutionary history of the 4q35 paralogous region, and of a sub-family of interspersed LSau repeats. In HSA, 4q35 duplications were localized at 1q12, 3p12.3, 4q35, 10q26, 20cen, whereas duplicons and interspersed LSau repeats simultaneously labeled the p arm of acrocentric chromosomes. A multi-site localization of 4q35-like sequences was also observed in PTR, GGO, PPY, HLA (Hominoidea) and PAN (Old World monkey), thus indicating that duplications of this region have occurred extensively in the two clades, which diverged at least 25 million years ago. In HSA, PTR and PAN, 4q35-derived duplicons co-localized with rDNA, whereas in GGO and PPY this association was partially lacking. In PAN, the single- and multi-site distribution of rDNA and paralogous sequences, respectively, indicates a different timing of sequence dispersal. The sub-family of interspersed LSau repeats showed a lesser dispersal than 4q35 duplications both in man and great apes. This finding suggests that duplications and repeated sequences have undergone different expansion/contraction events during evolution. The mechanisms underlying the dispersal of paralogous regions may be further derived through studies comparing the detailed structural organization of these genomic regions in man and primates.  相似文献   

13.
Hahn MW 《Genome biology》2007,8(7):R141-9

Background

Comparative genomic studies are revealing frequent gains and losses of whole genes via duplication and pseudogenization. One commonly used method for inferring the number and timing of gene gains and losses reconciles the gene tree for each gene family with the species tree of the taxa considered. Recent studies using this approach have found a large number of ancient duplications and recent losses among vertebrate genomes.

Results

I show that tree reconciliation methods are biased when the inferred gene tree is not correct. This bias places duplicates towards the root of the tree and losses towards the tips of the tree. I demonstrate that this bias is present when tree reconciliation is conducted on both multiple mammal and Drosophila genomes, and that lower bootstrap cut-off values on gene trees lead to more extreme bias. I also suggest a method for dealing with reconciliation bias, although this method only corrects for the number of gene gains on some branches of the species tree.

Conclusion

Based on the results presented, it is likely that most tree reconciliation analyses show biases, unless the gene trees used are exceptionally well-resolved and well-supported. These results cast doubt upon previous conclusions that vertebrate genome history has been marked by many ancient duplications and many recent gene losses.  相似文献   

14.
15.

Background  

The phylogenetic tree of Galliformes (gamebirds, including megapodes, currassows, guinea fowl, New and Old World quails, chicken, pheasants, grouse, and turkeys) has been considerably remodeled over the last decades as new data and analytical methods became available. Analyzing presence/absence patterns of retroposed elements avoids the problems of homoplastic characters inherent in other methodologies. In gamebirds, chicken repeats 1 (CR1) are the most prevalent retroposed elements, but little is known about the activity of their various subtypes over time. Ascertaining the fixation patterns of CR1 elements would help unravel the phylogeny of gamebirds and other poorly resolved avian clades.  相似文献   

16.
This is the first review of the developmental morphology of pteridophyte embryos since molecular phylogenies revolutionized concepts of tracheophyte evolution. In the light of these novel relationships, embryo characters are evaluated across pteridophytes to hypothesize homology and infer character transformations. Salient features of traditional categories used to classify pteridophyte embryos, for example endoscopy and exoscopy, are analyzed and related to gametophyte habit. Suspensor formation evolved in several lineages and is reinterpreted as representing a distinct developmental stage of the foot which is the only embryonic organ that is homologous across all land plants. Endoscopy in lycophytes is distinct from that of monilophytes, because lycophyte embryos undergo reorientation, lack interdigitating placental cells, and contain an interplacental space which may be related to their lack of a basal pad cell during archegonial development. Pteridophyte embryology may provide clues to tracheophytes evolution and novel developmental mechanisms.  相似文献   

17.
The karyotype of the Cretan spiny mouse Acomys minous was examined with chromosome banding techniques in 53 individuals from 12 localities of Crete, aiming to gain a more detailed knowledge on the chromosomal constitution and variability of its natural populations. We found that it consists of three Robertsonian (Rb) populations with 2n = 38, 2n = 40 and 2n = 42, respectively, the last one being reported for the first time, and with stable fundamental number (FNa = 66, FN = 68). The G‐banding pattern proves that the Rb populations are closely linked phylogenetically by the many common Rb fusions and the lack of monobrachial homologies. In addition, they appear to freely mate at their contact areas, producing viable and fertile hybrids. No other type of chromosomal rearrangement appears to have played part in the chromosomal evolution of this species, at least in the recent past, as indicated also by the study of the telomeric sequences. Heterochromatin appears to be restricted to the pericentromeric position of all acrocentric and most biarmed autosomes, as well as of the X chromosome, whereas the Y chromosome is uniformly, yet faintly heterochromatic. Chromosome banding comparison of the karyotypes in A. minous with those of the other species in the cahirinus group (i.e. Acomys cahirinus, Acomys cilicicus, and Acomys nesiotes) proves their very close phylogenetic relationship, further reinforced by the study of the cytochrome b sequences, and that A. minous possesses the ancestral karyotype of the group. It is suggested that at least two of the karyotypes that characterize A. minous today, pre‐existed in North Africa before it colonized Crete and that the specific status of the four members in the cahirinus group may need to be revisited. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 498–509.  相似文献   

18.
Sex in basidiomycete fungi is controlled by tetrapolar mating systems in which two unlinked gene complexes determine up to thousands of mating specificities, or by bipolar systems in which a single locus (MAT) specifies different sexes. The genus Ustilago contains bipolar (Ustilago hordei) and tetrapolar (Ustilago maydis) species and sexual development is associated with infection of cereal hosts. The U. hordei MAT-1 locus is unusually large (approximately 500 kb) and recombination is suppressed in this region. We mapped the genome of U. hordei and sequenced the MAT-1 region to allow a comparison with mating-type regions in U. maydis. Additionally the rDNA cluster in the U. hordei genome was identified and characterized. At MAT-1, we found 47 genes along with a striking accumulation of retrotransposons and repetitive DNA; the latter features were notably absent from the corresponding U. maydis regions. The tetrapolar mating system may be ancestral and differences in pathogenic life style and potential for inbreeding may have contributed to genome evolution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号