首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first five steps in de novo purine biosynthesis are involved in the formation of the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine. We show here that the first enzyme in de novo purine biosynthesis, PurF, is required for thiamine synthesis during aerobic growth on some but not other carbon sources. We show that PurF-independent thiamine synthesis depends on the recently described alternative pyrimidine biosynthetic (APB) pathway. Null mutations in zwf (encoding glucose-6-P dehydogenase), gnd (encoding gluconate-6-P dehydrogenase), purE (encoding aminoimidazole ribo-nucleotide carboxylase), and purR (encoding a regulator of gene expression) were found to affect the function of the APB pathway. A model is presented to account for the involvement of these gene products in thiamine biosynthesis via the APB pathway. Results presented herein demonstrate that function of the APB pathway can be prevented either by blocking intermediate formation or by diverting intermediate(s) from the pathway. Strong genetic evidence supports the conclusion that aminoimidazole ribotide (AIR) is an intermediate in the APB pathway.  相似文献   

2.
In Salmonella typhimurium, the first five steps in purine biosynthesis also serve as the first steps in the biosynthesis of the pyrimidine moiety of thiamine (vitamin B1). Strains with null mutations of the first gene of purine-thiamine synthesis (purF) can, under some circumstances, grow without thiamine. This suggests the existence of an alternative pathway to thiamine that can function without the purF protein. To demonstrate the nature and map position of the purF mutations corrected, a fine-structure genetic map of the purF gene was made. The map allows identification of deletion mutations that remove virtually all of the purF gene, as defined by mutations. We describe conditions and mutations (panR) which allow B1 synthesis appears to require enzymes which act mutants lacking purF function. The alternative route of B1 synthesis appears to require enzymes which act subsequent to the purF enzyme in the purine pathway.  相似文献   

3.
J. L. Zilles  D. M. Downs 《Genetics》1996,144(3):883-892
Thiamine is thought to be synthesized by two alternative pathways, one involving the first four enzymes of the purine pathway and a second that can function independently of the purine pathway. Insertion mutations in purG and purI prevent thiamine synthesis through the alternative pyrimidine biosynthetic (APB) pathway under aerobic but not anaerobic growth conditions. In contrast, point mutations in purG and purI caused one of three distinct phenotypes: Pur(-) Apb(-), Pur(-) Apb(+), or Pur(+) Apb(-). Analysis of these three mutant classes demonstrated two genetically separable functions for PurG and PurI in thiamine synthesis. In addition to their known enzymatic role in de novo purine synthesis, we propose that PurG and PurI play a novel, possibly nonenzymatic role in the APB pathway. Suppression analysis of Pur(-) Apb(-) mutants identified two new genetic loci involved in the APB pathway, apbB and apbD. We show here that mutations in apbB and apbD cause distinct, allele-specific suppression of the thiamine requirement of purG and purI mutants. Our results suggest that PurG and PurI and one or more components of the APB pathway may function as a complex needed for aerobic function of the APB pathway.  相似文献   

4.
The synthesis of the pyrimidine moiety of thiamine (vitamin B1) shares five reactions with the de novo purine biosynthetic pathway. Aminoimidazole ribotide (AIR) is the last common intermediate before the two pathways diverge. Evidence for the existence of a new pathway to the pyrimidine which bypasses the de novo purine biosynthetic pathway is reported here. This pathway is only expressed under anaerobic growth conditions and is denoted alternative pyrimidine biosynthesis or APB. Labeling studies are consistent with pantothenate being a precursor to the pyrimidine moiety of thiamine that is synthesized by the APB pathway. The APB pathway is independent of the alternative purF function which was proposed previously (D. M. Downs and J. R. Roth, J. Bacteriol. 173:6597-6604, 1991). The alternative purF function is shown here to be affected by temperature and exogenous pantothenate. Although the evidence suggests that the APB pathway is separate from the alternative purF function, the relationship between this function and the APB pathway is not yet clear.  相似文献   

5.
In Salmonella typhimurium, precursors to the pyrimidine moiety of thiamine are synthesized de novo by the purine biosynthetic pathway or the alternative pyrimidine biosynthetic (APB) pathway. The apbA gene was the first locus defined as required for function of the APB pathway (D. M. Downs and L. Petersen, J. Bacteriol. 176:4858–4864, 1994). Recent work showed the ApbA protein catalyzes the NADPH-specific reduction of ketopantoic acid to pantoic acid. This activity had previously been associated with the pantothenate biosynthetic gene panE. Although previous reports placed panE at 87 min on the Escherichia coli chromosome, we show herein that apbA and panE are allelic and map to 10 min on both the S. typhimurium and E. coli chromosomes. Results presented here suggest that the role of ApbA in thiamine synthesis is indirect since in vivo labeling studies showed that pantoic acid, the product of the ApbA-catalyzed reaction, is not a direct precursor to thiamine via the APB pathway.  相似文献   

6.
In Salmonella typhimurium, the genetic loci and biochemical reactions necessary for the conversion of aminoimidazole ribotide (AIR) to the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine remain unknown. Preliminary genetic analysis indicates that there may be more than one pathway responsible for the synthesis of HMP from AIR and that the function of these pathways depends on the availability of AIR, synthesized by the purine pathway or by the purF-independent alternative pyrimidine biosynthetic (APB) pathway (L. Petersen and D. Downs, J. Bacteriol. 178:5676-5682, 1996). An insertion in rseB, the third gene in the rpoE rseABC gene cluster at 57 min, prevented HMP synthesis in a purF mutant. Complementation analysis demonstrated that the HMP requirement of the purF rseB strain was due to polarity of the insertion in rseB on the downstream rseC gene. The role of RseC in thiamine synthesis was independent of rpoE.  相似文献   

7.
1. The pattern of distribution on the purine pathway of mutants of Salmonella typhimurium LT2 that had the double growth requirement for a purine plus the pyrimidine moiety of thiamine (ath mutants) indicated that purines and the pyrimidine moiety of thiamine share the early part of their biosynthetic pathways, and that 4-aminoimidazole ribonucleotide (AIR) is the last common intermediate. Two mutants that at first appeared anomalous were further investigated and found not to affect this deduction. 2. The ribonucleoside form of AIR (AIR(s)) satisfied the requirements both for a purine and for the pyrimidine moiety of thiamine of an ath mutant. 3. Methionine was required for the conversion of AIR into the pyrimidine moiety. 4. Radioactive AIR(s) was converted into radioactive pyrimidine moiety by an ath mutant without significant dilution of specific radioactivity. 5. Possible mechanisms for pyrimidine-moiety biosynthesis from AIR are discussed.  相似文献   

8.
1. Thiamine or the pyrimidine moiety of thiamine added in excess to a growing culture of Salmonella typhimurium LT2 repressed subsequent thiamine synthesis in non-growing organisms. 2. A mutant unable to convert added pyrimidine moiety into thiamine was not repressible by the pyrimidine, showing that thiamine, not the pyrimidine, was the repressor. 3. Thiamine repression occurred at 40mmug. of thiamine/mg. dry wt. or above and de-repression occurred at 30mmug. of thiamine/mg. dry wt. or below. 4. Thiamine controlled the pyrimidine and thiazole pathways at the same concentration and to the same extent. 5. Biosynthesis of the thiazole moiety had, in contrast with biosynthesis of the pyrimidine moiety, an additional feedback inhibition control that allowed utilization of the exogenous thiazole. 6. The enzymes joining the pyrimidine and thiazole moieties were repressible by high concentrations of thiamine. 7. Thiamine was rapidly converted into thiamine pyrophosphate and this appeared to be the active repressor. 8. Theoretical aspects of control of converging pathways are discussed.  相似文献   

9.
In Salmonella enterica serovar Typhimurium, PurF-independent thiamine synthesis (or alternative pyrimidine biosynthesis) allows strains, under some growth conditions, to synthesize thiamine in the absence of the first step in the purine biosynthetic pathway. Mutations have been isolated in a number of loci that prevent this synthesis and thus result in an Apb(-) phenotype. Here we identify a new class of mutations that prevent PurF-independent thiamine synthesis and show that they are defective in the nuo genes, which encode the major, energy-generating NADH dehydrogenase of the cell. Data presented here indicated that a nuo mutant has reduced flux through the oxidative pentose phosphate pathway that may contribute to, but is not sufficient to cause, the observed thiamine requirement. We suggest that reduction of the oxidative pentose phosphate pathway capacity in a nuo mutant is an attempt to restore the ratio between reduced and oxidized pyridine nucleotide pools.  相似文献   

10.
In Salmonella enterica serovar Typhimurium a mutation in the purF gene encoding the first enzyme in the purine pathway blocks, besides the synthesis of purine, the synthesis of thiamine when glucose is used as the carbon source. On carbon sources other than glucose, a purF mutant does not require thiamine, since the alternative pyrimidine biosynthetic (APB) pathway is activated. This pathway feeds into the purine pathway just after the PurF biosynthetic step and upstream of the intermediate 4-aminoimidazolribotide, which is the common intermediate in purine and thiamine synthesis. The activity of this pathway is also influenced by externally added pantothenate. tRNAs from S. enterica specific for leucine, proline, and arginine contain 1-methylguanosine (m(1)G37) adjacent to and 3' of the anticodon (position 37). The formation of m(1)G37 is catalyzed by the enzyme tRNA(m(1)G37)methyltransferase, which is encoded by the trmD gene. Mutations in this gene, which result in an m(1)G37 deficiency in the tRNA, in a purF mutant mediate PurF-independent thiamine synthesis. This phenotype is specifically dependent on the m(1)G37 deficiency, since several other mutations which also affect translation fidelity and induce slow growth did not cause PurF-independent thiamine synthesis. Some antibiotics that are known to reduce the efficiency of translation also induce PurF-independent thiamine synthesis. We suggest that a slow decoding event at a codon(s) read by a tRNA(s) normally containing m(1)G37 is responsible for the PurF-independent thiamine synthesis and that this event causes a changed flux in the APB pathway.  相似文献   

11.
Genetic analyses have suggested that the pyrimidine moiety of thiamine can be synthesized independently of the first enzyme of de novo purine synthesis, phosphoribosylpyrophosphate amidotransferase (PurF), in Salmonella typhimurium. To obtain biochemical evidence for and to further define this proposed synthesis, stable isotope labeling experiments were performed with two compounds, [2-13C]glycine and [13C]formate. These compounds are normally incorporated into thiamine pyrophosphate (TPP) via steps in the purine pathway subsequent to PurF. Gas chromatography-mass spectrometry analyses indicated that both of these compounds were incorporated into the pyrimidine moiety of TPP in a purF mutant. This result clearly demonstrated that the pyrimidine moiety of thiamine was being synthesized in the absence of the PurF enzyme and strongly suggested that this synthesis utilized subsequent enzymes of the purine pathway. These results were consistent with an alternative route to TPP that bypassed only the first enzyme in the purine pathway. Experiments quantitating cellular thiamine monophosphate (TMP) and TPP levels suggested that the alternative route to TPP did not function at the same capacity as the characterized pathway and determined that levels of TMP and TPP in the wild-type strain were significantly altered by the presence of purines in the medium.  相似文献   

12.
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella typhimurium. The biochemical steps and gene products involved in the conversion of aminoimidazole ribotide (AIR), a purine intermediate, to the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine have yet to be elucidated. We have isolated mutations in a new locus (Escherichia coli open reading frame designation yojK) at 49 min on the S. typhimurium chromosome. Two significant phenotypes associated with lesions in this locus (apbE) were identified. First, apbE purF double mutants require thiamine, specifically the HMP moiety. Second, in the presence of adenine, apbE single mutants require thiamine, specifically both the HMP and the thiazole moieties. Together, the phenotypes associated with apbE mutants suggest that flux through the purine pathway has a role in regulating synthesis of the thiazole moiety of thiamine and are consistent with ApbE being involved in the conversion of AIR to HMP. The product of the apbE gene was found to be a 36-kDa membrane-associated lipoprotein, making it the second membrane protein implicated in thiamine synthesis.  相似文献   

13.
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella enterica serovar Typhimurium and other bacteria. In addition to genes encoding enzymes in the biosynthetic pathway, mutations in other metabolic loci have been shown to prevent thiamine synthesis. The latter loci identify the integration of the thiamine biosynthetic pathway with other metabolic processes and can be uncovered when thiamine biosynthesis is challenged. Mutations in gshA, encoding gamma-L-glutamyl-L-cysteine synthetase, prevent the synthesis of glutathione, the major free thiol in the cell, and are shown here to result in a thiamine auxotrophy in some of the strains tested, including S. enterica LT2. Phenotypic characterization of the gshA mutants indicated they were similar enough to apbC and apbE mutants to warrant the definition of a class of mutants unified by (i) a requirement for both the hydroxymethyl pyrimidine (HMP) and thiazole (THZ) moiety of thiamine, (ii) the ability of L-tryosine to satisfy the THZ requirement, (iii) suppression of the thiamine requirement by anaerobic growth, and (iv) suppression by a second-site mutation at a single locus. Genetic data indicated that a defective ThiH generates the THZ requirement in these strains, and we suggest this defect is due to a reduced ability to repair a critical [Fe-S] cluster.  相似文献   

14.
An allele of rpoD (rpoD1181) that results in increased synthesis of the pyrimidine moiety of thiamine in Salmonella enterica was identified. The S508Y substitution caused by rpoD1181 is analogous to the S506F derivative of the Escherichia coli protein. The properties of this E. coli mutant protein have been well characterized in vitro. Identification of a metabolic phenotype caused by the rpoD1181 allele of S. enterica allows past in vitro results to be incorporated in continuing efforts to understand cellular processes that are integrated with the thiamine biosynthetic pathway.  相似文献   

15.
purF mutants of Salmonella typhimurium are known to require a source of both purine and thiamine; however, exogenous pantothenate may be substituted for the thiamine requirement. We show here that the effect of pantothenate is prevented by blocks in the oxidative pentose phosphate pathway, gnd (encoding gluconate 6-phosphate [6-P] dehydrogenase) or zwf (encoding glucose 6-P dehydrogenase). We further show that the defects caused by these mutations can be overcome by increasing ribose 5-P, suggesting that ribose 5-P may play a role in the ability of pantothenate to substitute for thiamine.  相似文献   

16.
A Zurlinden  M E Schweingruber 《Gene》1992,117(1):141-143
Biosyntheses of the pyrimidine and thiazole moieties of the thiamine molecule occur by separate pathways. In Schizosaccharomyces pombe, a gene, thi2, is responsible for thiazole synthesis [Schweingruber et al., Curr. Genet. 19 (1991) 249-254]. We have cloned a 3.1-kb genomic S. pombe fragment which can functionally complement a thi2 mutant. The fragment maps genetically at the thi2 site, indicating that it carries thi2. As shown by Northern hybridization analysis, the appearance of thi2 mRNA levels is repressed when cells are grown in the presence of thiamine and 5-(2-hydroxyethyl)-4-methylthiazole. The thi3 gene involved in the biosynthesis of the pyrimidine moiety, is also regulated by thiamine [Maundrell, J. Biol. Chem. 265 (1990) 10857-10864; Schweingruber et al., Curr. Genet. 19 (1991) 249-254]. We previously identified and analyzed four regulatory genes (tnr1, tnr2, tnr3, and thi1) that are responsible for the regulation of thi3 [Schweingruber et al., Genetics (1992) in press]. Mutants defective in these regulatory genes affect expression of thi2 in a similar way to thi3. This indicates that biosynthesis of the pyrimidine and thiazole moieties are under common genetic control in S. pombe.  相似文献   

17.
Production of a precursor to the pyrimidine moiety of thiamine.   总被引:1,自引:1,他引:0       下载免费PDF全文
The supernatant fluid from cultures of Escherichia coli W-11, a pur E mutant, prevented the inhibition of growth of E. coli B in a medium containing adenine or adenosine. Adenine inhibition was prevented more readily than adenosine inhibition. More than 90% of the biological activity of the supernatant fluid was recovered in the anionic fraction after treatment with Dowex-50 (NH4+). The cationic fraction, containing large amounts of 5-aminoimidazole ribonucleoside (AIRS), did not prevent adenine inhibition. The W-11 supernatant fluid was shown by bioautography to contain only one compound that prevented adenine inhibition. Proliferating and non-proliferating cultures produced only one compound that prevented adenine inhibition. The compound was shown to be an intermediate (int-1) in the biosynthesis of the pyrimidine moiety of thiamine, Int-1 was stable during sterilization at 121 C for 15 min, during concentration by either flask evaporation or lyophilization, and after storage for several days at 4 C or at -- 20 C. Int-1 was distinguishable from other known derivatives or intermediates of the pyrimidine moiety. A scheme is presented that illustrates the proposed relationship between int-1 and the synthesis of thiamine.  相似文献   

18.
Dalal, Fram R. (University of Pennsylvania, Philadelphia), Ronald E. Gots, and Joseph S. Gots. Mechanism of adenine inhibition in adenine-sensitive mutants of Salmonella typhimurium. J. Bacteriol. 91: 507-513. 1966.-The inhibition of growth of Salmonella typhimurium by adenine was studied with three adenine-sensitive mutants. These mutants were acutely sensitive to inhibition by adenine, were prototrophic in their growth requirements, and represented mutational events in three different genetic loci. In all cases, inhibition by adenine was relieved noncompetitively by thiamine (or its pyrimidine moiety), pantothenate (or its pantoyl moiety), and methionine alone or, more efficiently, in the presence of lysine. Kinetics of reversal indicated that adenine inhibited the synthesis of the reversing agents, probably at the level of a common factor required for their syntheses, such as the folic acid coenzymes. Support for this inference has been found by the facts that one of the mutants was identified as a partial auxotroph for p-aminobenzoic acid, and sulfadiazine could sensitize the wild type to acute inhibition by adenine.  相似文献   

19.
[14C]Formate is incorporated into the C-2 of the pyrimidine moiety of thiamin by Escherichia coli and Salmonella typhimurium. In Saccharomyces cerevisiae, it is incorporated into C-4. Radioactive carbons of [1-14C]glycine and [2-14C]glycine are incorporated by S. typhimurium into the C-4 and C-6 of the pyrimidine, respectively, but not by S. cerevisiae. These facts suggest that procaryotes and eucaryotes have different biosynthetic pathways for pyrimidine. In this study, the procaryotes tested incorporated [14C]formate into the C-2 and the eucaryotes incorporated it into the C-4 of the pyrimidine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号