首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 940 amber mutants in gene E of bacteriophage lambda was isolated to study the structure-function relationship of the gene product, the major capsid protein. The mutants were mapped to 43 mutation sites, most of which have been located, albeit tentatively, at exact points in the known base sequence, by deletion mapping and by the specificity of mutagenesis and the patterns of suppression. The patterns of suppression were interpreted in terms of both the efficiency of insertion of amino acid residues by suppressors and the exchangeability of amino acid residues. The exchangeability seems to be related to the hydrophilicity of the residues themselves and their environment, as well as to the functional similarity between the replaced and the inserted amino acid residues. Suppression of two of the mutations resulted in the production of characteristic aberrant head-related structures, each showing a defect in a different functional site in the protein. This, together with the approximate positions of some specific missense mutations as determined in this study, revealed the distribution of the functional sites along the polypeptide chain of the gene E product.  相似文献   

2.
Earlier studies of a group of monoclonal antibody-resistant (mar) mutants of herpes simplex virus type 1 glycoprotein C (gC) operationally defined two distinct antigenic sites on this molecule, each consisting of numerous overlapping epitopes. In this report, we further define epitopes of gC by sequence analysis of the mar mutant gC genes. In 18 mar mutants studied, the mar phenotype was associated with a single nucleotide substitution and a single predicted amino acid change. The mutations were localized to two regions within the coding sequence of the external domain of gC and correlated with the two previously defined antigenic sites. The predicted amino acid substitutions of site I mutants resided between residues Gln-307 and Pro-373, whereas those of site II mutants occurred between amino acids Arg-129 and Glu-247. Of the 12 site II mutations, 9 induced amino acid substitutions within an arginine-rich segment of 8 amino acids extending from residues 143 to 151. The clustering of the majority of substituted residues suggests that they contribute to the structure of the affected sites. Moreover, the patterns of substitutions which affected recognition by antibodies with similar epitope specificities provided evidence that epitope structures are physically linked and overlap within antigenic sites. Of the nine epitopes defined on the basis of mutations, three were located within site I and six were located within site II. Substituted residues affecting the site I epitopes did not overlap substituted residues of site II, supporting our earlier conclusion that sites I and II reside in spatially distinct antigenic domains. A computer analysis of the distribution of charged residues and the predicted secondary structural features of wild-type gC revealed that the two antigenic sites reside within the most hydrophilic regions of the molecule and that the antigenic residues are likely to be organized as beta sheets which loop out from the surface of the molecule. Together, these data and our previous studies support the conclusion that the mar mutations identified by sequence analysis very likely occur within or near the epitope structures themselves. Thus, two highly antigenic regions of gC have now been physically and genetically mapped to well-defined domains of the protein molecule.  相似文献   

3.
Thin map of gene 43, controlling the synthesis of T4 DNA polymerase, is obtained by mapping experiments performed with 39 amber mutants, and is used for analysis of the sites of DNA polymerase gene from the point of view of displaying the mutator effect. The mutant sites studied possessed different reaction on amino acid substitutions in the polypeptide chain of the enzyme. Most of sites of the DNA polymerase gene, with the exception of two "supersensitive", responsed only on the apparent type of the amino acid substitutions: the mutator effect of amber mutations, which are located at these sites, was exhibited only in the case of insertion of the definite amino acid in the respective point of polypeptide chain. The proposed system of amber mutations for studying the mutator effect, allowed the authors to obtain the data on the effect of concrete alterations in the polypeptide chain of the enzyme on the development of its mutator properties.  相似文献   

4.
以超阻遏突变体3—18为出发株,采用以乳糖为唯一碳源的NCE平板的方法分离到439 株调节突变体。通过转导引入tRNA抑制基因从中检测到 11株 purR(am)候选株。共转导分 析证明,这些突变株的琥珀浪突变均发生在purR上。用 supD. supE和 supF分别对上述各amber 突变体作了氨基酸取代实验,初步结果表明:同一氨基酸对purR不同位点(am)的氨基酸取 代,对PurR调节功能有不同程度的影响。不同氨基酸(3种)对purR同一位点(am)的氨基酸取 代,对其调节功能的影响也存在差异。  相似文献   

5.
Missense mutants of bacteriophage lambda that produce small proheads were found among prophage mutants defective in the major head protein gpE. Measurements of the sedimentation coefficient and molecular weight of the small proheads showed that they have the T = 4 structure composed of 240 molecules of gpE instead of the wild-type T = 7 structure composed of 420 molecules of gpE. When the phage mutants were grown in groE mutants of Escherichia coli, they produced small unprocessed proheads, which contained a smaller number (about 60) of the core protein (gpNu3) molecules than normal unprocessed proheads, which contain about 180 molecules of gpNu3. This shows that the major head protein determines the size of not only the shell but also the core of unprocessed proheads. These mutants by themselves produce very few mature small-headed phage particles, partly because the lambda DNA molecule, whose cos sites are separated at a distance of 48,500 bases, is too long to be packaged into the small proheads. However, the small proheads can package shorter DNA in vivo and in vitro at somewhat reduced efficiency, if the length or a multiple of the length between the cos sites of the DNA is 13,000 to 19,000 bases.  相似文献   

6.
The DNA sequence of the secA gene, essential for protein export in Escherichia coli, was determined and found to encode a hydrophilic protein of 901 amino acid residues with a predicted molecular weight of 101,902, consistent with its previously determined size and subcellular location. Sequence analysis of 9 secA(Ts) mutations conferring general protein export and secA regulatory defects revealed that these mutations were clustered in three specific regions within the first 170 amino acid residues of the SecA protein and were the result of single amino acid changes predicted to be severely disruptive of protein structure and function. The DNA sequence immediately upstream of secA was shown to encode a previously inferred gene, gene X. Sequence analysis of a conditionally lethal amber mutation, am109, previously inferred to be located proximally in the secA gene, revealed that it was located distally in gene X and was conditionally lethal due to its polar effect on secA expression. This and additional evidence are presented indicating that gene X and secA are cotranscribed.  相似文献   

7.
The lac repressor has been studied extensively but a precise three-dimensional structure remains unknown. Studies using mutational data can complement other information and provide insight into protein structure. We have been using the lacI gene-repressor protein system to study the mutational specificity of spontaneous and induced mutation. The sequencing of over 6000 lacI- mutations has revealed 193 missense mutations generating 189 amino acid replacements at 102 different sites within the lac repressor. Replacement sites are not distributed evenly throughout the protein, but are clustered in defined regions. Almost 40% of all sites and over one-half of all substitutions found occur within the amino-terminal 59 amino acid residues, which constitute the DNA-binding domain. The core domain (residues 60 to 360) is less sensitive to amino acid replacement. Here, substitution is found in regions involved in subunit aggregation and at sites surrounding residues that are implicated in sugar-binding. The distribution and nature of missense mutational sites directs attention to particular amino acid residues and residue stretches.  相似文献   

8.
A threading model of the Ralstonia eutropha polyhydroxyalkanoate (PHA) synthase was developed based on the homology to the Burkholderia glumae lipase, whose structure has been resolved by X-ray analysis. The lid-like structure in the model was discussed. In this study, various R. eutropha PHA synthase mutants were generated employing random as well as site-specific mutagenesis. Four permissive mutants (double and triple mutations) were obtained from single gene shuffling, which showed reduced activity and whose mutation sites mapped at variable surface-exposed positions. Six site-specific mutations were generated in order to identify amino acid residues which might be involved in substrate specificity. Replacement of residues T323 (I/S) and C438 (G), respectively, which are located in the core structure of the PHA synthase model, abolished PHA synthase activity. Replacement of the two amino acid residues Y445 (F) and L446 (K), respectively, which are located at the surface of the protein model and adjacent to W425, resulted in reduced activity without changing substrate specificity and indicating a functional role of these residues. The E267K mutant exhibited only slightly reduced activity with a surface-exposed mutation site. Four site-specific deletions were generated to evaluate the role of the C-terminus and variant amino acid sequence regions, which link highly conserved regions. Deleted regions were D281-D290, A372-C382, E578-A589 and V585-A589 and the respective PHA synthases showed no detectable activity, indicating an essential role of the variable C-terminus and the linking regions between conserved blocks 2 and 3 as well as 3 and 4. Moreover, the N-terminal part of the class II PHA synthase (PhaC(Pa)) from Pseudomonas aeruginosa and the C-terminal part of the class I PHA synthase (PhaC(Re)) from R. eutropha were fused, respectively, resulting in three fusion proteins with no detectable in vivo activity. However, the fusion protein F1 (PhaC(Pa)-1-265-PhaC(Re)-289-589) showed 13% of wild type in vitro activity with the fusion point located at a surface-exposed loop region.  相似文献   

9.
Some amino acid substitutions in the major capsid protein (gene E product) of lambda phage are found to cause a defect in DNA packaging. These substitutions permit initiation of DNA packaging and expansion of the prohead. However, cleavage of the concatemer DNA at the cos site takes place only to a very small extent, and the capsid eventually becomes empty. Interestingly, the mutations are suppressed by a decrease of the DNA length between the cos sites by 8000 to 10,000 bases. These properties are similar to those of amber mutants in gene D, which codes for the capsid outer-surface protein. Studies on the E missense.D amber double mutant show that the E protein and the D protein contribute additively to the stabilization of the condensed form of the DNA molecule in phage heads.  相似文献   

10.
In previous work (E. S. Tessman and P. K. Peterson, J. Bacteriol. 163:677-687 and 688-695, 1985), we isolated many novel protease-constitutive (Prtc) recA mutants, i.e., mutants in which the RecA protein was always in the protease state without the usual need for DNA damage to activate it. Most Prtc mutants were recombinase positive and were designated Prtc Rec+; only a few Prtc mutants were recombinase negative, and those were designated Prtc Rec-. We report changes in DNA sequence of the recA gene for several of these mutants. The mutational changes clustered at three regions on the linear RecA polypeptide. Region 1 includes amino acid residues 25 through 39, region 2 includes amino acid residues 157 through 184, and region 3 includes amino acid residues 298 through 301. The in vivo response of these Prtc mutants to different effectors suggests that the RecA effector-binding sites have been altered. In particular we propose that the mutations may define single-stranded DNA- and nucleoside triphosphate-binding domains of RecA, that polypeptide regions 1 and 3 comprise part of the single-stranded DNA-binding domain, and that polypeptide regions 2 and 3 comprise part of the nucleoside triphosphate-binding domain. The overlapping of single-stranded DNA- and nucleoside triphosphate-binding domains in region 3 can explain previously known complex allosteric effects. Each of four Prtc Rec- mutants sequenced was found to contain a single amino acid change, showing that the change of just one amino acid can affect both the protease and recombinase activities and indicating that the functional domains for these two activities of RecA overlap. A recA promoter-down mutation was isolated by its ability to suppress the RecA protease activity of one of our strong Prtc mutants.  相似文献   

11.
Systematic mutation of bacteriophage T4 lysozyme   总被引:22,自引:0,他引:22  
Amber mutations were introduced into every codon (except the initiating AUG) of the bacteriophage T4 lysozyme gene. The amber alleles were introduced into a bacteriophage P22 hybrid, called P22 e416, in which the normal P22 lysozyme gene is replaced by its T4 homologue, and which consequently depends upon T4 lysozyme for its ability to form a plaque. The resulting amber mutants were tested for plaque formation on amber suppressor strains of Salmonella typhimurium. Experiments with other hybrid phages engineered to produce different amounts of wild-type T4 lysozyme have shown that, to score as deleterious, a mutation must reduce lysozyme activity to less than 3% of that produced by wild-type P22 e416. Plating the collection of amber mutants covering 163 of the 164 codons of T4 lysozyme, on 13 suppressor strains that each insert a different amino acid substitutions at every position in the protein (except the first). Of the resulting 2015 single amino acid substitutions in T4 lysozyme, 328 were found to be sufficiently deleterious to inhibit plaque formation. More than half (55%) of the positions in the protein tolerated all substitutions examined. Among (N-terminal) amber fragments, only those of 161 or more residues are active. The effects of many of the deleterious substitutions are interpretable in light of the known structure of T4 lysozyme. Residues in the molecule that are refractory to replacements generally have solvent-inaccessible side-chains; the catalytic Glu11 and Asp20 residues are notable exceptions. Especially sensitive sites include residues involved in buried salt bridges near the catalytic site (Asp10, Arg145 and Arg148) and a few others that may have critical structural roles (Gly30, Trp138 and Tyr161).  相似文献   

12.
Summary The phr gene, which encodes protein of 472 amino acid residues, is required for light-dependent photoreactivation and enhances light-independent excision repair of ultraviolet light (UV)-induced DNA damage. In this study, dodecamer HindIII linker insertions were introduced into the cloned phr gene and the functional effects of the resulting mutations on photoreactivation and light-independent dark repair in vivo were studied. Among 22 mutants obtained, 7 showed no photoreactivation as well as no enhancement of light-independent repair. Four of these were located in amino acid residues between Gln333 and Leu371 near the 3 end of the gene, two were located in a small region at Glu275 to Glu280 near the middle of the gene and the remaining one was between Pro49 and Arg50. Three mutants that had insertions located in the 42 by segment from 399 to 441 by of the phr coding sequence (corresponding to amino acid residues Ile134 to Lys149) lost the light-independent repair effect but retained photoreactivation. These results suggest that (i) Escherichia coli DNA photolyase contains several critical sites that are distributed over much of the enzyme molecule, and (ii) a functional domain required for the effect on light-independent repair is at least in part distinct from that necessary for light-dependent photoreactivation.  相似文献   

13.
Domains of the TMV movement protein involved in subcellular localization   总被引:5,自引:1,他引:4  
To identify and map functionally important regions of the tobacco mosaic virus movement protein, deletions of three amino acids were introduced at intervals of 10 amino acids throughout the protein. Mutations located between amino acids 1 and 160 abolished the capacity of the protein to transport virus from cell to cell, while some of the mutations in the C-terminal third of the protein permitted function. Despite extensive tests, no examples were found of intermolecular complementation between mutants, suggesting that function requires each movement protein molecule to be fully competent. Many of the mutants were fused to green fluorescent protein, and their subcellular localizations were determined by fluorescence microscopy in infected plants and protoplasts. Most mutants lost the ability to accumulate in one or more of the multiple subcellular sites targeted by wild-type movement protein, suggesting that specific functional domains were disrupted. The order in which accumulation at subcellular sites occurs during infection does not represent a targeting pathway. Association of the movement protein with microtubules or with plasmodesmata can occur in the absence of other associations. The region of the protein around amino acids 9–11 may be involved in targeting the protein to cortical bodies (probably associated with the endoplasmic reticulum) and to plasmodesmata. The region around residues 49–51 may be involved in co-alignment of the protein with microtubules. The region around residues 88–101 appears to play a role in targeting to both the cortical bodies and microtubules. Thus, the movement protein contains independently functional domains.  相似文献   

14.
Temperature-sensitive folding (tsf) mutations in gene 9 of bacteriophage P22 interfere with the folding and association of the tailspike polypeptide chain at restrictive temperature. We report here the location and amino acid substitutions for 24 independent tsf mutants. The distribution of these and previously identified mutations is distinctly non-random; all of the 32 unambiguous sites of tsf mutations are located in the central 350 residues of the 666 residue tailspike polypeptide chain. No ts mutation has been found among the N-terminal 140 amino acids, and none among the C-terminal 170 amino acids. Since the physiological defect in these mutants is the destabilization of an early intermediate in the folding pathway, the localization of the mutants suggests that the central region of the chain is critical for formation or stabilization of this early intermediate. The majority of amino acids that served as sites for the tsf mutations were hydrophilic residues. Sixty percent of the replacements of these residues represented charge changes. This probably reflects the selection for mutant sites at the mature protein surface where the substitutions can be best tolerated without interfering with function. None of the sites of tsf mutations were at aromatic residues, and only one proline site was found. Substitutions at these residues may cause lethal folding defects which are not recovered as tsf mutants. The local sequences at tsf sites resemble those reported for turns. Structural studies identify beta-sheet as the dominant secondary structure. These mutations may disrupt the formation of conformational features of beta-sheets which are repeated, such as turns, associations between pairs of strands, or sheet/sheet packing interactions. Such a model accounts for the occurrence of tsf mutations with similar defective phenotypes at multiple positions along the chain.  相似文献   

15.
Three ochre and two amber mutants in yeast have been definitively identified by the amino acid replacements in iso-1-cytochromes c from intragenic revertants. Except for rare and sometimes unusual changes, all of the replacements were single amino acids whose codons differed from UAA or UAG by one base. These assignments, which were based on the absence of tryptophan replacements in ochre revertants, could be corroborated from the studies of two groups of suppressors that were shown to act on either the ochre or amber mutants. All five nonsense mutants are located at different sites in the cyc1 gene and all are at sites that can be occupied by amino acids having a wide range of structures. The relative frequencies of the amino acid replacements indicate that identical codons located at different sites may respond differently to a mutagenic agent. Notably glutamine replacements occurred almost exclusively in UV-induced revertants of only one ochre mutant cyc1–9, but not at all or at reduced proportions in the others. Similarly, lysine replacements occurred almost exclusively in the NA-induced revertants of only the ochre mutant cyc1–72, but not at all in the others. These and other results reveal that mutation of A·T base pairs by UV and nitrous acid are dependent upon the location of the codon within the gene as well as the location of the base pair within the codon. From these findings, it appears as if the type of base-pair changes induced by UV and nitrous acid are strongly influenced by adjacent nucleotide sequences.  相似文献   

16.
B Fane  J King 《Genetics》1987,117(2):157-171
Amber mutations have been isolated and mapped to more than 60 sites in gene 9 of P22 encoding the thermostable phage tailspike protein. Gene 9 is the locus of over 30 sites of temperature sensitive folding (tsf) mutations, which affect intermediates in the chain folding and subunit association pathway. The phenotypes of the amber missense proteins produced on tRNA suppressor hosts inserting serine, glutamine, tryosine and leucine have been determined at different temperatures. Thirty-three of the sites are tolerant, producing functional proteins with any of the four amino acids inserted at the sites, independent of temperature. Tolerant sites are concentrated at the N-terminal end of the protein indicating that this region is not critical for conformation or function. Sixteen of the sites yield temperature sensitive missense proteins on at least one nonsense suppressing host. Most of the sites with ts phenotypes map to the central region of the gene which is also the region where most of the tsf mutations map. Mutations at 15 of the sites have a lethal phenotype on at least one tRNA suppressor host. For nine out of ten sites tested with at least one lethal phenotype, the primary defect was in the folding or subunit association of the missense polypeptide chain. This analysis of the tailspike missense proteins distinguishes three classes of amino acid sites in the polypeptide chain; residues whose side chains contribute little to folding, subunit assembly or function; residues critical for maintaining the folding and subunit assembly pathway at the high end of the temperature range of phage growth; and residues critical over the entire temperature range of growth.  相似文献   

17.
Glycoprotein C from herpes simplex viruses types 1 and 2 (gC-1 and gC-2) acts as a receptor for the C3b fragment of the third component of complement. Our goal is to identify domains on gC involved in C3b receptor activity. Here, we used in-frame linker-insertion mutagenesis of the cloned gene for gC-2 to identify regions of the protein involved in C3b binding. We constructed 41 mutants of gC-2, each having a single, double, or triple insertion of four amino acids at sites spread across the protein. A transient transfection assay was used to characterize the expressed mutant proteins. All of the proteins were expressed on the transfected cell surface, exhibited processing of N-linked oligosaccharides, and bound one or more monoclonal antibodies recognizing distinct antigenic sites on native gC-2. This suggested that each of the mutant proteins was folded into a native structure and that a loss of C3b binding by any of the mutants could be attributed to the disruption of a specific functional domain. When the panel of insertion mutants was assayed for C3b receptor activity, we identified three distinct regions that are important for C3b binding, since an insertion within those regions abolished C3b receptor activity. Region I was located between amino acids 102 and 107, region II was located between residues 222 and 279, and region III was located between residues 307 and 379. In addition, region III has some structural features similar to a conserved motif found in complement receptor 1, the human C3b receptor. Finally, blocking experiments indicated that gC-1 and gC-2 bind to similar locations on the C3b molecule.  相似文献   

18.
The amber mutation sites of 6 purR(am) mutants were determined bycloning and DNA sequencing. The results showed that the mutations were distributed at three different sites in PurR coding region, G721(→A), C933(→T) and C1155(→T), which respectively turn Trp-147,Gln-218 and Gln-292 of PurR into TAG terminal codon. To determine the effect of the three amino acid residues on regulatory function of PurR protein 5 different kinds of tRNA suppressor genes, Su3, Su4, Su6, Su7 and Su9 were used for creating the PurR protein variants with single amino acid substitution. The results indicated that Cys, Glu, Gly, His and Arg which substituted Trp-147 respectively all could not recover the regulation function of PurR. It confirmed that Trp-147 is a critical amino acid for the PurR function. Gln-292 substituted respectively by the same amino acids also could not recover the PurR function, demonstrating that Gln-292 is also an important amino acid residue in PurR.  相似文献   

19.
Antigenic mutants of poliovirus (Sabin strain, serotype 1) were isolated by the resistance of the virus to anti-Sabin neutralizing monoclonal antibodies. The amino acid replacements within the capsid protein sequence causing the altered antigenicity were identified for each of 63 isolates. The mutations cluster into distinct nonoverlapping peptide segments that group into three general immunological phenotypes on the basis of cross-neutralization analyses with 15 neutralizing anti-Sabin monoclonal antibodies. Location of the mutated amino acid residues within the three-dimensional structure of the virion indicates that the majority of these amino acid residues are highly exposed and located within prominent structural features of the viral surface. Those mutated amino acid residues that are less accessible to antibody interaction are often involved in hydrogen bonds or salt bridges that would stabilize the local tertiary structure of the antigenic site. The interactions of the peptide segments that form these neutralizing sites suggest specific models for the generation of neutralization-resistant variants and for the interaction between the viral surface and antibody.  相似文献   

20.
Sequence analysis of the genomic RNA of interstrain guanidine-resistant and antibody-resistant variant recombinants of poliovirus type 1 mapped the resistance of mutants capable of growth in 2.0 mM guanidine hydrochloride to a region located 3' of nucleotide 4444. This region of the viral genome specifies the nonstructural protein 2C. The sequence of genomic RNA encoding 2C from six independently isolated mutants resistant to 2.0 mM guanidine was determined. All six isolates contained a mutation in 2C at the same position in all cases, resulting in two types of amino acid changes. Dependent mutants were examined and found to contain two amino acid changes each within 2C. Mutants resistant to 0.53 mM guanidine were isolated and found to lack the mutations seen in variants resistant to 2.0 mM guanidine. A comparison of the amino acid sequences of the 2C proteins of poliovirus, foot-and-mouth disease virus, rhinovirus types 2 and 14, and encephalomyocarditis virus revealed a strong homology over regions totaling 115 residues. All of the mutations observed in guanidine-selected mutants were contained within this region. The amino acid region containing the mutations observed in poliovirus mutants resistant to 2.0 mM guanidine was compared with the homologous region in the other picornaviruses; a strong correlation was found between the amino acid present at this position and the sensitivity of the virus to 2.0 mM guanidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号