首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two very different techniques for measuring the energy of neutrons in the energy range 0.1-10 MeV are presented and compared. A recoil-proton spectrometer is used to determine the energy spectra of neutrons produced by the d(4)-Be and p(4)-Be reactions down to the low-energy threshold of 0.7 MeV. The same radiation fields are also measured with a recently developed method using a high-pressure ionization chamber that can be used to determine the mean energy of the neutrons in a mixed neutron-gamma radiation field provided the gamma-ray absorbed dose fraction is determined independently. An intercomparison of the two methods shows that the high-pressure ionization chamber compares well and supplements the established recoil-proton spectrometer technique. The almost isotropic response of the chamber has enabled measurements to be made of the variation of mean neutron energy with depth in water for the two radiation fields.  相似文献   

2.
A recently developed method for the direct measurement of the restricted dose mean LET (cutoff energy = 500 eV) of an unspecified photon or electron radiation field with the high-pressure ionization chamber has been utilized to investigate the variation of this radiobiologically important parameter outside the primary beam of a clinical 60Co unit. A small high-pressure tissue-equivalent ionization chamber was used, and its characteristics and experimental considerations for the present investigation are reported. Measurement of the restricted dose mean LET at the examined points outside the primary 60Co beam showed an increase of 50% with respect to the restricted dose mean LET of the uncollimated 60Co beam. No significant variation was noted with off-central axis distance, field size, wedge filter, or depth below Perspex slabs. Dose rates at the points of measurement outside the primary 60Co beam were 1-5% of the dose rate in the primary beam.  相似文献   

3.
Linear energy transfer (LET infinity) spectra of identified charge fragments and primaries, produced by nuclear interactions of 670 MeV/A neon in water, were measured along the unmodulated Bragg curve of the neon beam. The relative biological effectiveness (RBE) values for spermatogonial cell killing, as reported on the basis of weight loss assay of mouse testes irradiated with beams of approximately constant single LET infinity, were summed over the particle LET infinity spectra to obtain an effective RBE for each charged-particle species, as a function of water absorber thickness. The resultant values of effective RBE were combined to obtain an effective RBE for the mixed radiation field. The RBE calculated in this way was compared with experimental RBEs obtained for spermatogonial cell killing in the mixed radiation field produced by neon ions traversing a thick water absorber. Discrepancies of 10-40% were observed between the calculated RBE and the RBE measured in the mixed radiation field. Part of this discrepancy can be attributed to undetected low-Z fragments, whose contribution is not included in the calculation, leading to an overestimated value for the calculated RBE. On the other hand, calculated values 10% greater than the measured RBE are explained as track structure effects due to the higher radial ionization density near neon tracks relative to the ionization density near the silicon tracks used to fit the RBE vs LET infinity data.  相似文献   

4.
Low doses of 60Co γ radiation, which kill no more than about 5% of the zygospores, change gene recombination at only 2 short stages during the course of meiosis in Chlamydomonas reinhardi, but higher doses, which kill more than 10% of the spores, depress recombination at all stages up to pachytene. Irradiation with particles having a mean linear energy transfer (LET) of about 1300 and 1600 MeV g−1 cm2 changes recombination in a manner which appears to combine the effects characteristic of both low and high doses of γ-radiation simultaneously. The “γ high-dose” type of response has a relative biological effectiveness (RBE) of between 20 and 35, and the “γ low-dose” RBE is greater than 1 although precise evaluation is impossible due to the complexity of the response. The RBE for survival was 16.5 at the low dose levels studied.  相似文献   

5.
To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions generated by HIMAC at NIRS and BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis focusing on the dependencies of (1) the animal strains with different radiation sensitivities, and (2) LET with different nuclei. Of the three mouse strains, SCID, B6 and C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to both X-ray and carbon ion ( 290 MeV/n) as evaluated by 10% apoptotic criterion. However, the sensitivity differences among the strains were much smaller in case of carbon ion comparing to that of X-ray. Regarding the LET dependency, the sensitivity was compared with using C3H and B6 cells between the carbon (13 keV/micrometers) and neon (70 keV/micrometers) ions. Carbon (290 MeV/n) did not give a detectable LET dependency from the criterion whereas the neon (400 MeV/n) showed 1.4 fold difference for both C3H and B6 cells. Although a LET dependency was examined by using the most sensitive SCID cells, no significant difference was detected.  相似文献   

6.
The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 using ionization chambers of 0.01 or 0.04 cm3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm2) for five brain SRT cases irradiated with dynamic conformal arcs.The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 were +0.48%, +0.56%, −0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were −0.35% (range, −0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively.The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm2.  相似文献   

7.
Three small parallel-plate ionization chambers were developed for measuring dose rates, of primarily low-energy alpha particles in the energy range 0.4-3.5 MeV, at a defined cell-Mylar interface. Spectral energy distributions of these alpha particles were also measured at the same position using a specially designed small-area silicon surface barrier detector. Dose rates were derived from the spectral distributions and compared with those derived from the ionization chambers. Different alpha-particle energies were obtained using a 144-MBq 238Pu collimated source and a variety of Mylar moderator foils of different thicknesses. These measurements, extended to mean alpha-particle energies as low as 0.4 MeV, will enable us to correlate radiobiological data with effects of alpha particles terminating in different regions of cell nuclei.  相似文献   

8.
MR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc. Monte Carlo simulations were carried out with the magnetic field in three orientations: the magnetic field aligned perpendicular to the chamber and beam axis (transverse orientation), the magnetic field parallel to the chamber as well as parallel to the beam axis. Monte Carlo simulation results were validated with measurements using an electromagnet with magnetic field strength upto 1.1 T with the chambers in transverse orientation. The measurements and simulation results were in good agreement, except for the A26MR ionization chamber in transverse orientation. The maximum increase in response of the ionization chambers observed was 8.6% for the transverse orientation. No appreciable change in chamber response due to the magnetic field was observed for the magnetic field parallel to the ionization chamber and parallel to the photon beam.Polarity and recombination correction factor were experimentally investigated in the transverse orientation. The polarity effect and recombination effect were not altered by a magnetic field.This study further investigates the response of the ionization chambers as a function of the chambers’ rotation around their longitudinal axis. A variation in response was observed when the chamber was not rotationally symmetric, which was independent of the magnetic field.  相似文献   

9.
Resolving the LET spectrum of environmental radiation in space for assessing dose equivalents creates special problems due to superposition effects. Three components of the radiation field in space, trapped protons, tissue disintegration stars, and neutrons, contribute the bulk of the total dose equivalent. While lack of discrimination of neutron recoil and trapped primary protons does not interfere with correct determination of the combined dose equivalent as such, the simultaneous bursts of several low-energy protons and alpha particles from tissue disintegration stars completely defy LET-resolution with conventional instrumentation. So far, the tissue star dose has been determined only semiquantitatively from nuclear emulsion data. The neutron spectrum in space shows a markedly higher relative fluence in the region beyond 5 MeV than the fission neutron spectrum. Therefore, its LET spectrum centers less heavily on LET values near the proton Bragg Peak. This would call for assigning a QF value of less than 10 to the neutron dose in space. Still more serious shortcomings exist with regard to LET interpretation of heavy primaries.  相似文献   

10.
The relationship between dose mean lineal energy and relative variance has been exploited previously to derive yD from the calculated variance in current measurements in steady and uniform radiation fields. Recently Kellerer and Rossi made the observation that utilization of two detectors can make the variance technique practicable in time-varying fields. We report here the first measurements of yD for 10 MeV X rays and 9 and 18 MeV electrons from a pulsed linear accelerator using the variance method. Two independent analog-to-digital converters were used to obtain data from two spherical proportional counters in synchrony with the beam pulse. The method is described in detail and results are reported for site diameters of 1/2, 1, and 2 microns. Data for an accurate determination of yD can be obtained with this technique in less than 1 min, making possible an essentially "on line" determination of yD or zD in a clinical situation.  相似文献   

11.
Summary The calibration procedure to determine the absorbed dose within a phantom irradiated with fast neutrons is described for ionization chambers. A comparison between values of the neutron dose determined with paired ionization chambers and values of the neutron fluence measured with a fission chamber (238U) is given. The comparison indicates the energy variation of the fast neutrons within a phantom irradiated with 14 MeV neutrons.Dedicated to Prof. Dr. Dr. h. c. mult. B. Rajewsky on the occasion of his 80th birthday.  相似文献   

12.
The dosimetry is described for an investigation of the induction of somatic aberrations in Tradescantia occidentalis by substantially mono-energetic neutrons in the energy range 100 keV to 15 MeV, by 200 keV X-rays and cobalt-60 gamma-radiation. Spectrometry was carried out for both neutrons and X-rays. Neutron fluence was measured by uranium fission chambers. Two types of ionization chamber were employed for dose measurement. One chamber was manufactured of CH-plastic and filled with acetylene and the other of graphite and filled with carbon dioxide. Dosimetry for X- and gamma-radiation was by means of lithium fluoride thermoluminescent dosemeters calibrated against a Victoreen ionization chamber.  相似文献   

13.
14.
Probabilities for secondary cancer incidence have been estimated for a patient with Hodgkin's disease for whom treatment has been planned with different radiation modalities using photons and protons. The ICRP calculation scheme has been used to calculate cancer incidence from dose distributions. For this purpose, target volumes as well as critical structures have been outlined in the CT set of a patient with Hodgkin's disease. Dose distributions have been calculated using conventional as well as intensity-modulated treatment techniques using photon and proton radiation. The cancer incidence has been derived from the mean doses for each organ. The results of this work are: (a) Intensity-modulated treatment of Hodgkin's disease using nine photon fields (15 MV) results in nearly the same cancer incidence as treating with two opposed photon fields (6 MV). (b) Intensity-modulated treatment using nine proton fields (maximum energy 177.25 MeV) results in nearly the same cancer incidence as treating with one proton field (160 MeV). (c) Irradiation with protons using the spot scanning technique decreases the avoidable cancer incidence compared to photon treatment by a factor of about two. This result is independent of the number of beams used. Our work suggests that there are radiotherapy indications in which intensity-modulated treatments will result in little or no reduction of cancer incidence compared to conventional treatments. However, proton treatment can result in a lower cancer incidence than photon treatment.  相似文献   

15.
PurposeTo examine whether it is essential to apply correction factors for ion recombination (kS) to percentage depth dose (PDD) measurements and to the volume-averaging effect (kvol) to ensure accurate absolute dose calibration for flattening filter-free (FFF) beams for the most commonly used ionization chambers.MethodsWe surveyed medical physicists worldwide (n = 159) to identify the five most common ionization chamber combinations used for absolute and relative reference dosimetry of FFF beams. We then assessed the overall absolute dose calibration error for FFF beams of the Artiste Siemens and TrueBeam Varian linear accelerators resulting from failing to apply correction factors kS in the PDD(10) and the volume-averaging effect (kvol) to such chamber combinations.ResultsAll the chamber combinations examined—the Farmer PTW 30013 ionization chamber used for absolute dosimetry, and the PTW 31010, PTW 30013, IBA CC04, IBA CC13, and PTW 31021 ionization chambers used for PDD curves measurements—showed non-negligible errors (≥0.5%). The largest error (1.6%) was found for the combination of the Farmer PTW 30013 chamber with the IBA CC13 chamber, which was the most widely used chamber combination in our survey.ConclusionsBased on our findings, we strongly recommend assessing the impact of failing to apply correction factors kS in the PDD(10) and kvol prior to using any chamber type for FFF beam reference dosimetry purposes.  相似文献   

16.
Most modern radiation therapy devices allow the use of very small fields, either through beamlets in Intensity-Modulated Radiation Therapy (IMRT) or via stereotactic radiotherapy where positioning accuracy allows delivering very high doses per fraction in a small volume of the patient. Dosimetric measurements on medical accelerators are conventionally realized using air-filled ionization chambers. However, in small beams these are subject to nonnegligible perturbation effects. This study focuses on liquid ionization chambers, which offer advantages in terms of spatial resolution and low fluence perturbation. Ion recombination effects are investigated for the microLion detector (PTW) used with the Cyberknife system (Accuray). The method consists of performing a series of water tank measurements at different source-surface distances, and applying corrections to the liquid detector readings based on simultaneous gaseous detector measurements. This approach facilitates isolating the recombination effects arising from the high density of the liquid sensitive medium and obtaining correction factors to apply to the detector readings. The main difficulty resides in achieving a sufficient level of accuracy in the setup to be able to detect small changes in the chamber response.  相似文献   

17.
The yield of his+ reversions in the Ames Salmonella tester strain TA2638 has been determined for 60Co gamma rays, 140 kV X rays, 5.4 keV characteristic X rays, 2.2 MeV protons, 3.1 MeV alpha particles, and 18 MeV/U Fe ions. Inactivation studies were performed with the same radiations. For both mutation and inactivation, the maximum effectiveness per unit absorbed dose was obtained for the characteristic X rays, which have a dose averaged linear energy transfer (LET) of roughly 10 keV/micron. The ratio of the effectiveness of this radiation to gamma rays was 2 for inactivation and about 1.4 for the his+ reversion. For both end points the effectiveness decreases substantially at high LET, i.e., for the alpha particles and the Fe ions. The composition of the bottom and the top agar was the one recommended by Maron and Ames [Mutat. Res. 113, 173-215 (1983)] for application in chemical mutagenicity tests. The experiments with the less penetrating radiations differed from the usual protocol by utilization of a technique of plating the bacteria on the surface of the top agar. As in an earlier study [Roos et al., Radiat. Res. 104, 102-108 (1985)] greatly enhanced yields of mutations, relative to the spontaneous reversion rate, were obtained in these experiments by performing the irradiations 6 h after plating, which differs from the conventional procedure to irradiate the bacteria shortly after plating.  相似文献   

18.
The detonation of a nuclear weapon or a nuclear accident represent possible events with significant exposure to mixed neutron/γ-radiation fields. Although radiation countermeasures generally have been studied in subjects exposed to pure photons (γ or X rays), the mechanisms of injury of these low linear energy transfer (LET) radiations are different from those of high-LET radiation such as neutrons, and these differences may affect countermeasure efficacy. We compared 30-day survival in mice after varying doses of pure γ and mixed neutron/γ (mixed field) radiation (MF, Dn/Dt = 0.65), and also examined peripheral blood cells, bone marrow cell reconstitution, and cytokine expression. Mixed-field-irradiated mice displayed prolonged defects in T-cell populations compared to mice irradiated with pure γ photons. In mouse survival assays, the growth factor granulocyte colony-stimulating factor (G-CSF) was effective as a (post-irradiation) mitigator against both γ-photons and mixed-field radiation, while the thrombopoietin (TPO) mimetic ALXN4100TPO was effective only against γ irradiation. The results indicate that radiation countermeasures should be tested against radiation qualities appropriate for specific scenarios before inclusion in response plans.  相似文献   

19.
Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ~ 151 keV/μm), 600 MeV/u silicon ions (LET ~ 51 keV/μm), or 1 GeV protons (LET ~ 0.2 keV/μm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-μm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy.  相似文献   

20.
Study of heavy ion radiation-induced effects on mice could provide insight into the human health risks of space radiation exposure. The purpose of the present study is to assess the relative biological effectiveness (RBE) of (12)C and (28)Si ion radiation, which has not been reported previously in the literature. Female C57BL/6J mice (n = 15) were irradiated using 4-8 Gy of (28)Si (300 MeV/nucleon energy; LET 70 keV/μm) and 5-8 Gy of (12)C (290 MeV/nucleon energy; LET 13 keV/μm) ions. Post-exposure, mice were monitored regularly, and their survival observed for 30 days. The LD(50/30) dose (the dose at which 50 % lethality occurred by 30-day post-exposure) was calculated from the survival curve and was used to determine the RBE of (28)Si and (12)C in relation to γ radiation. The LD(50/30) for (28)Si and (12)C ion is 5.17 and 7.34 Gy, respectively, and the RBE in relation to γ radiation (LD(50/30)-7.25 Gy) is 1.4 for (28)Si and 0.99 for (12)C. Determination of RBE of (28)Si and (12)C for survival in mice is not only important for space radiation risk estimate studies, but it also has implications for HZE radiation in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号