首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeting and Processing of Pro-Opiomelanocortin in Neuronal Cell Lines   总被引:2,自引:0,他引:2  
Pro-opiomelanocortin (POMC) is the precursor to several pituitary hormones including adrenocorticotropic hormone and beta-endorphin (beta-END). POMC is also expressed in the brain, predominantly in discrete neuronal cell populations of the hypothalamus. In the pituitary and brain, POMC undergoes tissue-specific proteolysis to release different bioactive peptides. POMC processing in neuronal cell lines was studied after infection of PC12 and Neuro2A cells with a recombinant retrovirus carrying the porcine POMC cDNA. Our results indicate that both cell lines synthesize and target POMC to the regulated secretory pathway. Only the Neuro2A cells, however, can achieve proteolytic processing of POMC. Chromatographic and immunological characterization of the POMC-related material showed that beta-lipotropin (beta-LPH) and nonacetylated beta-END(1-31) are major maturation products of POMC in these cells. Release of both beta-LPH and beta-END(1-31) from infected Neuro2A cells can be stimulated by secretagogues in a calcium-dependent manner. Taken together, our results suggest that the cellular machinery of Neuro2A cells can recognize a foreign prohormone, target it to neurosecretory vesicles, process it into biologically active peptides, and secrete it in a manner characteristic to peptidergic neurons.  相似文献   

2.
A vaccinia virus vector was used to express the yeast KEX1 gene, which encodes a prohormone carboxypeptidase specific for the removal of basic amino acids from prohormone processing intermediates, in mammalian cells. When produced in BSC-40 cells, Kex1p was localized to the perinuclear region and conferred a large increase in enzymatic activity characteristic of this carboxypeptidase. Expression of the KEX1 gene together with the yeast KEX2 gene, which encodes a prohormone endopeptidase specific for cleavage at pairs of basic amino acids, and the mouse proopiomelanocortin (mPOMC) cDNA in BSC-40 cells resulted in the full conversion of mPOMC to mature peptides including gamma-lipotropin. This in vivo processing of mPOMC to mature peptides by the KEX2/KEX1 gene products demonstrates a significant functional homology of the basic prohormone processing machinery in yeast and neuroendocrine cells.  相似文献   

3.
2Hz和100Hz电针加速脑内三种阿片肽基因表达   总被引:25,自引:0,他引:25  
郭惠夫  王晓民 《生理学报》1997,49(2):121-127
我室以往的工作证明2Hz和100Hz电针可引起中枢释放不同种类的阿片肽,本工作试图阐明不同频率的电针是否影响三种阿片肽的基因转录。用地高辛标记的反义cRNA探针进行原位杂交,显示大鼠脑内前脑啡肽原(PPE),前强啡肽强(PPD)和前阿黑皮素原(POMC)mRNA。结果:(1)低、高频电针均不影响POMC mRNA的水平。(2)对PPE的影响,两种频率电针诱导脑干网状结构头端腹内侧区PPE mRNA  相似文献   

4.
The intermediate lobe of the pituitary gland synthesizes a glycoprotein, proopiomelanocortin (POMC), which is cleaved by specific proteolytic enzymes to generate several hormonal peptides. The purpose of the present study was to examine the possible role of the carbohydrate moiety in the synthesis, intracellular processing and release of POMC-derived peptides in frog (Rana ridibunda) intermediate lobe cells. In vitro incorporation of [3H]-labelled glucosamine gave rise to three major radioactive products. Trypsin digestion of each of these glycopeptides gave a single glucosamine-labelled tryptic fragment with identical chromatographic characteristics. We conclude that Rana POMC is glycosylated in only one site (its gamma-MSH region) and that intracellular processing of this prohormone gives rise to smaller glycopeptides including glycosylated gamma-MSH. Treatment with the antibiotic tunicamycin (10 micrograms/ml, 6 hr) inhibited the glycosylation of POMC but did not significantly alter the neosynthesis of the peptide moiety of the precursor. Pulse-chase experiments combined with high-performance liquid chromatography analysis of the peptides derived from POMC revealed that inhibition of glycosylation by tunicamycin had no effect on the enzymatic cleavage of the precursor nor on the release of mature peptides. Thus, it is concluded that, in the frog, glycosylation of POMC has no influence on the biosynthesis, processing and release of intermediate lobe hormones.  相似文献   

5.
Proopiomelanocortin (POMC) peptides are produced by many cell systems, including a population of macrophage-like cells in mouse spleen. After transplantation of mice with Ehrlich ascites tumor cells, the number of POMC producing spleen cells increase up to 10-fold by 5 to 6 days. The POMC peptides produced by these cells increase even more, as evidenced by radioimmunoassay. Thus, these data indicate both proliferation of splenic POMC cells and increased production of POMC peptides per cell after tumor challenge. Characterization of the peptides by sequence-specific radioimmunoassays and high performance liquid chromatography documents the presence of both ACTH(1-39) and of ACTH(1-14) in these cells. These peptides have multifacetted effects on immune parameters and may exhibit a general antiinflammatory action, partly mediated through inhibition of interleukin 1-stimulated events. The tumor cells themselves do not produce POMC peptides, but display met- and leu-enkephalin immunoreactivity. Also cultured tumor cells display such immunoreactivity, indicating endogenous production of opioid peptides. The opioid peptides of the tumor cells may both affect host immune defenses and play intratumoral autocrine or paracrine roles.  相似文献   

6.
7.
We have identified and partially characterized the Saccharomyces cerevisiae KEX1 gene product, Kex1p, to assess its role in processing secreted protein precursors. Anti-Kex1p antibodies identified a 113-kilodalton protein that was absent in cells in which the KEX1 gene has been disrupted and that was more abundant in cells overexpressing the KEX1 gene. Kex1p was found to be a membrane-associated glycoprotein with N-linked carbohydrate. The N-linked oligosaccharide(s) was modified in a progressive manner after synthesis, causing the glycoprotein to slowly increase in mass to 115 kilodaltons. After a Kex2p-mediated cleavage event at specific pairs of basic amino acids, alpha-factor and K1 killer toxin precursors have COOH-terminal dibasic residue extensions and require a carboxypeptidase B-like enzyme to process the precursors to maturity. A carboxypeptidase activity, with apparent specificity for basic amino acids, was detected in KEX1 cells. Disruption of the KEX1 gene abolished this activity, while overexpression of KEX1 increased it. Our results provide biochemical evidence consistent with earlier genetic work, that KEX1 encodes a serine carboxypeptidase involved in the processing of precursors to secreted mature proteins.  相似文献   

8.
The multifunctional prohormone, proopiomelanocortin (POMC), is processed in the melanotrope cells of the pituitary pars intermedia at pairs of basic amino acid residues to give a number of peptides, including alpha-melanophore-stimulating hormone (alpha-MSH). This hormone causes skin darkening in amphibians during background adaptation. Here we report the complete structure of Xenopus laevis prohormone convertase PC2, the enzyme thought to be responsible for processing of POMC to alpha-MSH. A comparative structural analysis revealed an overall amino acid sequence identity of 85-87% between Xenopus PC2 and its mammalian counterparts, with the lowest degree of identity in the signal peptide sequence (28-36%) and the region amino-terminal to the catalytic domain (59-60%). The occurrence of a second, structurally different PC2 protein reflects the expression of two Xenopus PC2 genes. The expression pattern of PC2 in the Xenopus pituitary gland of black- and white-adapted animals was found to be similar to that of POMC, namely high expression in active melanotrope cells of black animals. This observation is in line with a physiological role for PC2 in processing POMC to alpha-MSH.  相似文献   

9.
Pro-opiomelanocortin (POMC) is the precursor of several neuropeptides, such as corticotropin (ACTH), alpha-melanocyte-stimulating hormone (MSH), and the endogenous opioid, beta-endorphin (EP). ACTH-dependent Cushing's syndrome is characterized by ACTH overproduction and is associated with an increased risk of cardiovascular disease. Endothelial dysfunction has been recognized as an early marker of cardiovascular disease. However, the mechanism underlying endothelial dysfunction by ACTH overexpression in Cushing's patients remains elusive. Endothelial cells, the primary cells producing endothelin (ET)-1, are both the source and target of POMC-derived peptides. In the present study, we generated adenovirus vectors (Ad) encoding POMC (Ad-POMC) and green fluorescent protein (GFP; Ad-GFP) to investigate whether POMC gene transfer altered the ET-1 homeostasis and angiogenic functions in human EA.hy926 endothelial cells. Via adenovirus gene delivery, the POMC-transduced EA.hy926 cells released significantly elevated ACTH and beta-EP levels (P < 0.001). In addition, POMC gene delivery significantly decreased the ET-1 release (P < 0.001) without affecting the ET-1 messenger RNA (mRNA) level. Despite no effect on the secretion of matrix metalloproteinases (MMPs) and cell proliferation, POMC gene delivery significantly inhibited the migration (P < 0.01) and tube-forming capability (P < 0.01) of endothelial cells. Moreover, the POMC-induced inhibition of tube formation could be partially reversed by adding exogenous ET-1 (P < 0.05). In summary, the attenuated ET-1 release and angiogenic processes by POMC overexpression may contribute to endothelial dysfunction, thereby providing a link between Cushing's syndrome and cardiovascular diseases.  相似文献   

10.
Liu F  Khawaja X 《Regulatory peptides》2005,127(1-3):191-196
siRNA oligonucleotides for protein phosphatase 5 (PP5) were designed and transfected into mouse corticotroph AtT20 cells to induce lower PP5 expression levels. PP5-siRNA transfections (at 3 days) produced a approximately 50% down-regulation in targeted protein levels. PP5-underexpressing cells released significantly more ir-ACTH (10-12-fold) relative to baseline levels and promoted POMC release into the media. Neither CRF-mediated ACTH release nor dexamethasone-induced ACTH repression were affected in PP5-siRNA transfected cells. In summary, our observations suggest that endogenous PP5 can exert a negative modulatory effect on basal ACTH release in neurosecretion-competent AtT20 cells through a mechanism as yet unknown but which does not directly involve regulated CRF or glucocorticoid receptor-dependent pathways. However, PP5 may cause mis-sorting of POMC and POMC-derived peptides at the constitutive-like secretory pathway level in an unregulated manner. Such a missorting could lead to impaired processing of POMC.  相似文献   

11.
In murine skin, after depilation-induced anagen, there was a differential spatial and temporal expression of pro-opiomelanocortin (POMC) mRNA, of the POMC-derived peptides beta-endorphin, ACTH, beta-MSH, and alpha-MSH, and of the prohormone convertases PC1 and PC2 in epidermal and hair follicle keratinocytes and in the cells of sebaceous units. Using a combination of in situ hybridization histochemistry and immunohistochemistry, we found cell-specific variations in the expression of POMC mRNA that were consistent with immunoreactivities for POMC-derived peptides. Cells that contained POMC peptide immunoreactivity (IR) also expressed POMC mRNA, and where the IR increased there was a parallel increase in mRNA. The levels of PC1-IR and PC2-IR also showed cell-specific variations and were present in the same cells that contained the POMC peptides. Based on the cleavage specificities of these convertases and on the spatial and temporal expression of the convertases and of ACTH, beta-endorphin, beta-MSH, and alpha-MSH, we can infer that the activities of PC1 and PC2 are responsible for the cell-specific differential processing of POMC in murine skin.  相似文献   

12.
The order of secretion of newly synthesized and older bioactive peptides was investigated using primary rat intermediate pituitary melanotropes, which synthesize, store, and secrete peptides derived from pro-ACTH/endorphin (PAE; also POMC). PAE-derived peptides produced by the cells were biosynthetically labeled by incubating the cells with radioactive amino acids at various times preceding the period during which secretion was examined; secreted and cellular peptides were characterized and quantitated by immunoprecipitation, using affinity-purified antibodies to selected regions of PAE, followed by polyacrylamide gel electrophoretic analysis. Release in the absence of secretagogues (basal or constitutive release) was compared to release in the presence of maximally effective levels of 8-bromo-cAMP and BaCl2 (stimulated or regulated release). Both cell types showed short-lived preferential basal release of newly synthesized and not fully mature peptides (less than 2-3 h old). Conversely, the cells showed preferential stimulated secretion of older peptides. A process of maturation occurred, taking 2-4 h, after which the secretion of newly synthesized and older peptides in response to secretagogues was nearly indistinguishable for the smallest product peptides. The data support a model of gradual processing of peptides from precursors into smaller products and maturation from molecules only available for basal release into peptides available for stimulated secretion as well as for basal release. Basal secretion was found to include mature peptides as well as intermediates and precursor molecules. The data do not support the existence of any preferential regulated secretion of newly synthesized peptides.  相似文献   

13.
Opiate peptides are thought to modulate the pattern of LH release in female rats. We tested the hypothesis that changes in proopiomelanocortin (POMC) gene expression occur in proestrous (PRO) and ovariectomized (OVX) steroid-treated rats which may explain their unique patterns of LH secretion. Using in situ hybridization, we examined whether diurnal changes in POMC gene expression occur in the arcuate nucleus. Four groups of rats were used in this study. 1) PRO rats were used after exhibiting at least two consecutive 4-day estrous cycles; 2) OVX rats were killed 9 days after ovariectomy; 3) estradiol (E2)-treated rats were OVX for 7 days and then treated for 2 days; and 4) E2-progesterone (P4)-treated rats were treated with E2 as described above, and on day 9 at 1030 h, P4 was administered. Rats were killed at 2300, 0300, 1000, 1300, 1500, 1800, or 2300 h, beginning on the evening of diestrous day 2 or day 8 after ovariectomy. POMC gene expression exhibited a diurnal rhythm on PRO. Levels of mRNA rose during the morning, peaked between 0300-1000 h, and decreased by 2300 h. In E2-treated rats, which exhibited a LH surge similar in timing to the PRO surge, POMC mRNA levels exhibited a diurnal rhythm strikingly similar to that observed in PRO animals. OVX abolished the rhythm; however, average POMC mRNA levels across the 24-h period were not significantly different from those in PRO or E2-treated rats. P4 treatment increased POMC mRNA levels by 2300 h compared to those in all other experimental groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Pro-opiomelanocortin (POMC)-related peptides in extracts of anterior and neurointermediate pituitary lobes from pigs were characterized by gel chromatography, reversed-phase chromatography and radioimmunoassays. The peptide content was ca. 3-fold greater in the anterior lobe compared to the neurointermediate lobe (19.8 nmol POMC/anterior lobe vs 7.0 nmol/neurointermediate lobe). In the neurointermediate lobe 93% of POMC was processed to alpha-melanocyte-stimulating hormone (alpha-MSH) and analogs exclusively of low molecular weight. Most of the remaining adrenocorticotropic hormone (ACTH)-related material consisted of the glycine-extended intermediate ACTH-(1-14) and analogs. In contrast only one fourth to one third of the N-terminal part of POMC (N-POMC) was processed to amidated gamma-MSH and its C-terminal glycine-extended precursor. The relative amount of amidated gamma-MSH was the same as alpha-MSH and analogs (94%). However, more than 95% of these peptides were of high molecular weight. In the anterior lobe 2.3% of N-POMC was processed and 94% was amidated gamma-MSH of only high molecular weight. These results show that gamma-MSH and alpha-MSH are amidated to the same extent and that gamma 1-MSH and gamma 2-MSH immunoreactivity are present in both the anterior lobe and the neurointermediate lobe. The results suggest that the production of amidated peptides is not regulated by the amidation process itself but at an earlier step (e.g. at the proteolytic cleavage).  相似文献   

15.
The modulation of pro-opiomelanocortin (POMC) synthesis in Xenopus laevis pituitary intermediate lobe (IL) during background adaptation and the role of dopamine and cAMP in mediating this effect were examined. Neurointermediate lobes (NILs) were pulselabeled in vitro with [3H]arginine and analyzed for POMC synthesis by acid-urea gel electrophoresis. After black background adaptation of the animal (7 days), POMC synthesis increased 5-6-fold, while after white background adaptation (7 days), POMC synthesis decreased by 76%. Dopamine (50 microM) suppressed POMC synthesis in NILs in culture. In the absence of dopamine, POMC synthesis was stimulated. Several experiments were conducted to determine the category of dopamine receptor in the X. laevis IL. A D-2 dopamine receptor agonist inhibited immunoreactive alpha-MSH release from the NIL in a D-2 antagonist-reversible manner. A D-1 receptor agonist or antagonist did not alter the release of immunoreactive alpha-MSH from the NIL. Dopamine (10 microM) inhibited forskolin-stimulated cAMP accumulation. In addition, dopamine inhibition of POMC synthesis in cultured ILs was reversed by 8-Br-cAMP. These studies suggest that white background adaptation results in stimulation of the X. laevis D-2 receptor, which reduces cAMP production and POMC synthesis. Conversely, during black background adaptation the IL D-2 receptor is not stimulated, leading to increased cAMP production and POMC synthesis.  相似文献   

16.
17.
Pro-opiomelanocortin (POMC) gene expression and POMC peptides have been demonstrated in the Leydig cells of the testis, although selective removal of the Leydig cells with the cytotoxic drug ethane dimethane sulfonate did not significantly reduce levels of testicular POMC mRNA or peptides in adult rats. Since macrophages in the rat spleen synthesize POMC peptides, we investigated whether isolated macrophages from the adult rat testis may be an additional source of POMC-derived peptides. Testicular macrophages were isolated by collagenase treatment of adult rat testes and adherence to siliconized glass coverslips; the biological, cytochemical and immunological characteristics of the attached cells were compared with those of Leydig cells purified by Percoll gradient centrifugation. Macrophages in the cell preparations were identified by positive esterase cytochemical staining, latex bead ingestion, and immunocytochemical staining with ED2 (a macrophage-specific monoclonal antibody), and an absence of 3 beta-hydroxysteroid dehydrogenase cytochemical staining. Leydig cells in the purified preparations were positive for 3 beta-hydroxysteroid dehydrogenase and esterase staining but negative with ED2, and were not phagocytic. Based on these criteria, the purities of the macrophage and Leydig cell preparations employed in this study were estimated to be 87 +/- 4% and 91 +/- 3%, respectively. Cytoplasmic beta-endorphin (beta EP) immunoreactivity (ir) was present in 62 +/- 9% of cells in the purified Leydig cell preparations--confirming these cells as a source of POMC-derived peptides. In addition, ir-beta EP and ir-ACTH were localized to the cytoplasm of a similar proportion of cells (beta EP, 62.5 +/- 5%; ACTH, 64 +/- 5%) in macrophage preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study demonstrates the presence of a rich plexus of neuropeptide Y (NPY) immunoreactive fibers in the hypothalamus and in the intermediate lobe of the pituitary of Xenopus laevis. During superfusion of neurointermediate lobe tissue, synthetic NPY induces a rapid, powerful and dose-dependent inhibition of in vitro release of MSH, endorphin and other proopiomelanocortin (POMC) derived peptides. Therefore, NPY undoubtedly is one of the growing number of neuropeptides that are likely involved in control of the amphibian MSH cells. Although a number of stimulatory neuropeptides have been found, this is the first neuropeptide to apparently function through an inhibitory mechanism. In that a 2-hr treatment with NPY did not influence POMC biosynthesis, nor processing of this prohormone to smaller peptides, we conclude that the primary action of NPY is a direct effect on the secretory process of the MSH cell.  相似文献   

19.
Peptidylglycine α-amidating monooxygenase (PAM) is an essential enzyme that catalyzes the COOH-terminal amidation of many neuroendocrine peptides. The bifunctional PAM protein contains an NH2-terminal monooxygenase (PHM) domain followed by a lyase (PAL) domain and a transmembrane domain. The cytosolic tail of PAM interacts with proteins that can affect cytoskeletal organization. A reverse tetracycline-regulated inducible expression system was used to construct an AtT-20 corticotrope cell line capable of inducible PAM-1 expression. Upon induction, cells displayed a time- and dose-dependent increase in enzyme activity, PAM mRNA, and protein. Induction of increased PAM-1 expression produced graded changes in PAM-1 metabolism. Increased expression of PAM-1 also caused decreased immunofluorescent staining for ACTH, a product of proopiomelanocortin (POMC), and prohormone convertase 1 (PC1) in granules at the tips of processes. Expression of PAM-1 resulted in decreased ACTH and PHM secretion in response to secretagogue stimulation, and decreased cleavage of PC1, POMC, and PAM. Increased expression of a soluble form of PAM did not alter POMC and PC1 localization and metabolism. Using the inducible cell line model, we show that expression of integral membrane PAM alters the organization of the actin cytoskeleton. Altered cytoskeletal organization may then influence the trafficking and cleavage of lumenal proteins and eliminate the ability of AtT-20 cells to secrete ACTH in response to a secretagogue.  相似文献   

20.
Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well as their glycine-extended precursors, were characterized by sequence-specific radioimmunoassays, gel-chromatography, h.p.l.c. and amino acid sequencing. alpha MSH and gamma 1MSH constituted 0.27-1.32% and 0.10-5.10%, respectively, of the POMC-derived products [calculated as the sum of adrenocorticotropic hormone (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders of magnitude greater than alpha MSH and gamma 1MSH. Most (99%) of the HP-N was of low molecular mass and consisted mainly of HP-N-30. The remaining part was high-molecular-mass HP-N, probably HP-N-108, although the presence of HP-N-44 could not be completely excluded. These results show that all the possible amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests that the generation of amidated peptides is mainly regulated at the endopeptidase level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号