首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that several imidazole derivatives possess affinity to histamine H(3) and H(4) receptors. Continuing our study on structural requirements responsible for affinity and selectivity for H(3)/H(4) receptor subtypes, two series of 3-(1H-imidazol-4-yl)propyl carbamates were prepared: a series of unsaturated alkyl derivatives (1-9) and a series possessing a cycloalkyl group different distances to the carbamate moiety (10-13). The compounds were tested for their affinities at the human histamine H(3) receptor, stably expressed in CHO-K1 cells. Compounds 1, 2, 5-7, 10-13 were investigated for their affinities at the human histamine H(4) receptor co-expressed with Gα(i2) and Gβ(1)γ(2) subunits in Sf9 cells. To expand the pharmacological profile, compounds were further tested for their H(3) receptor antagonist activity on guinea pig ileum and in vivo after oral administration to mice. All tested compounds exhibited good affinity for the human histamine H(3) receptor with K(i) values in the range from 14 to 194nM. All compounds were active in vivo after peroral administration (p.o.) to Swiss mice, thus demonstrating their ability to cross the blood-brain barrier. The most potent H(3) receptor ligand of these series was compound 5, 3-(1H-imidazol-4-yl)propyl pent-4-enylcarbamate with the highest affinity (K(i)=14nM). Additionally, compound 3 showed remarkable central nervous system (CNS) H(3)R activity, increasing the N(τ)-methylhistamine levels in mice with an ED(50) value of 0.55mg/kg, p.o. evidencing therefore, a twofold increase of inverse agonist/antagonist potency compared to the reference inverse agonist/antagonist thioperamide. In this study, the imidazole propyloxy carbamate moiety was kept constant. The different lipophilic moieties connected to the carbamate functionality in the eastern part of the molecule had a range of influences on the human H(4) receptor affinity (154-1326nM).  相似文献   

2.
Structure-activity relationships for a series of phenoxypiperidine pyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. The search for compounds with improved hERG and DAT selectivity without the formation of in vivo active metabolites identified 6-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-4,4-dimethyl-4,5-dihydro-2H-pyridazin-3-one 17b. Compound 17b met discovery flow criteria, demonstrated potent H(3)R functional antagonism in vivo in the rat dipsogenia model and potent wake activity in the rat EEG/EMG model at doses as low as 0.1 mg/kg ip.  相似文献   

3.
6-{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]-phenyl}-2H-pyridazin-3-one 6 (Irdabisant; CEP-26401) was recently reported as a potent H(3)R antagonist with excellent drug-like properties and in vivo activity that advanced into clinical evaluation. A series of pyridone analogs of 6 was synthesized and evaluated as H(3)R antagonists. Structure-activity relationships revealed that the 5-pyridone regiomer was optimal for H(3)R affinity. N-Methyl 9b showed excellent H(3)R affinity, acceptable pharmacokinetics and pharmaceutical properties. In vivo evaluation of 9b showed potent activity in the rat dipsogenia model and robust wake-promoting activity in the rat EEG model.  相似文献   

4.
A novel series of 4-pyridazin-3-one and 5-pyridazin-3-one analogues were designed and synthesized as H(3)R antagonists. Structure-activity relationship revealed the 5-pyridazin-3-ones 8a and S-methyl 8b had excellent human and rat H(3)R affinities, and acceptable pharmacokinetic properties. In vivo evaluation of 8a showed potent activity in the rat dipsogenia model and robust wake-promoting activity in the rat EEG/EMG model.  相似文献   

5.
A series of aliphatic and aromatic ether derivatives of 3-piperidinopropan-1-ol has been prepared by four different methods. The ethers obtained were evaluated for their affinities at recombinant human histamine H3 receptor, stably expressed in CHO-K1 or HEK 293 cells. All compounds investigated show from moderate to high in vitro affinities in the nanomolar concentration range. Selected compounds were investigated under in vivo conditions after oral administration to mice. Some proved to be highly potent and orally available histamine H3 receptor antagonists. The most potent antagonists in this series have been in vitro the 4-(1,1-dimethylpropyl)phenyl ether 19 (hH3R K(i) = 8.4 nM) and in vivo the simple ethyl ether 2 (ED50 = 1.0mg/kg).  相似文献   

6.
Synthesis and biological evaluation of the novel histamine H(3) receptor ligands is described. Two series of ethers (aliphatic and aromatic) have been prepared by four different methods. Compounds were evaluated for their affinities at recombinant human H(3) receptor stably expressed in CHO cells. The ethers show from low to moderate in vitro affinities in nanomolar concentration range. The most potent compound was the 1-[3-(4-tert-butylphenoxy)propyl]-4-piperidino-piperidine 16 (hH(3)R K(i)=100 nM). Several members of the new series investigated under in vivo conditions, proved to be inactive.  相似文献   

7.
A series of compounds possessing both H(1) histamine receptor antagonist and 5-lipoxygenase (5-LO) inhibitory activities was synthesized. The H(1)-binding scaffolds of cetirizine, efletirizine, and loratadine were linked to a lipophilic N-hydroxyurea, the 5-LO inhibiting moiety of zileuton. Both activities were observed in vivo, as was increased CYP3A4 inhibition compared to their respective single-function drugs. Selected analogs in the series were shown to be orally active in guinea pig models.  相似文献   

8.
Extensive SAR has been established in the alkoxy lactone series and this has lead to the discovery of DFP (5,5-dimethyl-3-(2-propoxy)-4-methanesulfonylphenyl)-2(5H)-furanon e), a potent COX-2 inhibitor exhibiting in vivo efficacy in all models studied.  相似文献   

9.
Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation   总被引:1,自引:0,他引:1  
An important issue for chromatin remodeling complexes is how their bromodomains recognize particular acetylated lysine residues in histones. The Rsc4 subunit of the yeast remodeler RSC contains an essential tandem bromodomain (TBD) that binds acetylated K14 of histone H3 (H3K14ac). We report a series of crystal structures that reveal a compact TBD that binds H3K14ac in the second bromodomain and, remarkably, binds acetylated K25 of Rsc4 itself in the first bromodomain. Endogenous Rsc4 is acetylated only at K25, and Gcn5 is identified as necessary and sufficient for Rsc4 K25 acetylation in vivo and in vitro. Rsc4 K25 acetylation inhibits binding to H3K14ac, and mutation of Rsc4 K25 results in altered growth rates. These data suggest an autoregulatory mechanism in which Gcn5 performs both the activating (H3K14ac) and inhibitory (Rsc4 K25ac) modifications, perhaps to provide temporal regulation. Additional regulatory mechanisms are indicated as H3S10 phosphorylation inhibits Rsc4 binding to H3K14ac peptides.  相似文献   

10.
A series of novel 1-substituted-4-phenyl-1,2,4-triazolo[4,3-a]quinazolin-5(4H)-ones 7 were synthesized by the cyclization of 2-hydrazino-3-phenylquinazolin-4(3H)-one 6 with various one carbon donors. The starting material 2-hydrazino-3-phenylquinazolin-4(3H)-one 6, was synthesized from aniline 1 by a novel innovative route. When tested for their in vivo H(1)-antihistaminic activity on conscious guinea pigs all the test compounds protected the animals from histamine induced bronchospasm significantly, whereas the compound 1-methyl-4-phenyl-1,2,4-triazolo[4,3-a]quinazolin-5(4H)-one 7b (percentage protection 70.7%) was found to be equipotent with the reference standard chlorpheniramine maleate (percentage protection 71%). These compounds show negligible sedation ( approximately 5%) when compared to the reference standard (26%). Hence they could serve as prototype molecules for future development.  相似文献   

11.
A series of novel 1-substituted-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-ones were synthesized by the cyclization of 2-hydrazino-3-benzyl-3H-quinazolin-4-one with various one-carbon donors. The starting material 2-hydrazino-3-benzyl-3H-quinazolin-4-one was synthesized from benzylamine by a new innovative route. When tested for their in vivo H1 -antihistaminic activity on guinea pigs, all the test compounds protected the animals from histamine induced bronchospasm significantly. The compound 1-methyl-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (II) emerged as the most active compound of the series and it is more potent (percent protection 76%) when compared to the reference standard chlorpheniramine maleate (percent protection 71%). Compound II showed negligible sedation (7%) when compared to chlorpheniramine maleate (30%). Hence it could serve as prototype molecule for further development as a new class of H1 -antihistamines.  相似文献   

12.
Thioredoxin reductase (TrxR) is critical for cellular redox regulation and is involved in tumor proliferation, apoptosis and metastasis. Its C-terminal redox-active center contains a cysteine (Cys497) and a unique selenocysteine (Sec498), which are exposed to solvent and easily accessible. Thus, it is becoming an important target for anticancer drugs. Selective inhibition of TrxR by 1,2-(bis-1,2-benzisoselenazol-3(2H)-one)ethane (4a) prevents proliferation of several cancer cell lines both in vivo and in vitro. Using the structure of 4a as a starting point, a series of novel bis-1,2-benzisoselenazol-3(2H)-ones was designed, prepared and tested to explore the structure-activity relationships (SARs) for this class of inhibitor and to improve their potency. Notably, 1,2-(5,5'-dimethoxybis(1,2-benzisoselenazol-3(2H)-one))ethane (12) was found to be more potent than 4a in both in vitro and in vivo evaluation. Its binding sites were confirmed by biotin-conjugated iodoacetamide assay and a SAR model was generated to guide further structural modification.  相似文献   

13.
Investigation of a series 6-[2-(4-aryl-1-piperazinyl)ethyl]-2H-1,4-benzoxazin-3(4H)-ones has led to the discovery of potent 5-HT(1A/1B/1D) receptor antagonists with and without additional SerT affinity. Modulation of the different target activities gave compounds with a range of profiles suitable for further in vivo characterization.  相似文献   

14.
On the basis of the previously reported benzimidazole 1,3'-bipyrrolidine benzamides (1), a series of related pyrrolidin-3-yl-N-methylbenzamides were synthesized and evaluated as H(3) receptor antagonists. In particular, compound 32 exhibits potent H(3) receptor binding affinity, improved pharmaceutical properties and a favorable in vivo profile.  相似文献   

15.
16.
Benzodiazepine binding sites have generally been labelled with benzodiazepine agonists: (3H)flunitrazepam and (3H)diazepam in vivo. We studied the in vivo binding of the antagonist (3H)Ro 15-1788 in mice and compared it to the in vivo binding of (3H)flunitrazepam. For this in vivo labelling, mice were injected with labelled and unlabelled ligands. Animals were then sacrificed and bound radioactivity was measured after homogenization of the excised brain and filtration of the homogenate. (3H)Ro 15-1788 is a better tool than (3H)flunitrazepam for in vivo labelling of benzodiazepine receptors since 1) it labels specifically the central type binding sites, 2) injection of 4 times less (3H)Ro 15-1788 (50 microCi/kg) than (3H)flunitrazepam (200 microCi/kg) produced the same amount of bound radioactivity, 3) 70-90% of the total (3H)Ro 15-1788 present in the brain is membrane bound instead of 45-55% with (3H)flunitrazepam, 4) maximal binding of (3H)Ro 15-1788 is reached within 3 min, 5) only 5% of the membrane bound (3H)Ro 15-1788 is nonspecific instead of 15% for (3H)flunitrazepam.  相似文献   

17.
Histone H3 Lys4 trimethylation (H3-K4me3) is a conserved mark of actively transcribed chromatin. Using a conditional mutant of the yeast H3-K4 methyltransferase, Set1p, we demonstrate rapid turnover of H3-K4me3 and H3-K4me2 in vivo and show this process requires Yjr119Cp, of the JARID1 family of JmjC proteins. Ectopic overexpression of mouse Jarid1B, a Yjr119Cp homolog, greatly diminished H3-K4me3 and H3-K4me2 in HeLa cells, suggesting these proteins function as K4 demethylases in vivo.  相似文献   

18.
1. beta-Amyrin synthesized by pea seedlings in the presence of (3RS)-[2-(14)C,(4R)-4-(3)H(1)]mevalonic acid (for nomenclature see Cahn, Ingold & Prelog, 1956) was subjected to a series of degradations to locate the positions within the molecule of the incorporated tritium. 2. The location of five of the six labelled hydrogen atoms at C-3, C-9, C-18 and C-19 (two) confirms that the mechanism of cyclization of squalene expected from the biogenetic isoprene rule is functioning in vivo.  相似文献   

19.
20.
Optimization of a series of aminomethyl ketone diamine H(3)R antagonists to reduce the brain exposure by lowering the pKa, led to molecules with improved pharmacokinetic properties. Compounds 9, 19, and 25 had high affinity for human H(3)R and demonstrated in vivo H(3)R functional activity in the rat dipsogenia model. Compound 9 displayed modest wake-promoting activity in the rat EEG/EMG model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号