首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the phosphorylation of the NDH-F subunit of the thylakoid Ndh complex, we constructed three site-directed mutant transgenic tobaccos (Nicotiana tabacum) (T181A, T181S and T181D) in which the 541ACT543 triplet encoding the Thr-181 has been substituted by GCT, TCT or GAT encoding alanine, serine and aspartic acid, respectively. Western blots with phospho-threonine antibody detected the 73 kD NDH-F phosphorylated polypeptide in control but not in mutant tobaccos. Differences in Ndh activity, chlorophyll fluorescence and photosynthesis among mutants and control plant demonstrate the key role of the phosphorylation of conserved Thr-181 in the activity and function of the Ndh complex. The substitution of aspartic acid for threonine in T181D mimics the presumable activation effects of the threonine phosphorylation in Ndh activity, post-illumination increase of chlorophyll fluorescence and photosynthesis rapid responses to changing light intensities. A tentative role of the phosphorylation-activated Ndh complex is suggested to poise the redox level and, consequently, optimizing the rate of cyclic electron transport under field conditions.  相似文献   

2.
An Ndh-deficient mutant of tobacco ( Nicotiana tabacum cv. Petit Havana) was prepared by disrupting the ndhF gene in a transplastomic approach. The mutant (Δ ndhF ) showed 10% of the Ndh complex activity (EC 1.6.5.3) and 8% of the NDH-F polypeptide of that of non-transformed plants. However, in Δ ndhF , NDH-A, another Ndh polypeptide, was still present at 50% of the level in non-transformed plants. Δ ndhF tobacco showed higher sensitivity than non-transformed plants to photo-oxidative stress (as judged by chlorophyll bleaching) caused by increased light intensity and paraquat applications. These photo-oxidative treatments increased the amount and activity of the Ndh complex, thylakoid peroxidase, post-illumination chlorophyll fluorescence and non-photochemical quenching (NPQ) of chlorophyll fluorescence in non-transformed but not in Δ ndhF tobacco. Highly stressed non-transformed plants showed a rapid post-rise decline of chlorophyll fluorescence, probably indicating a re-oxidation of reduced plastoquinone. The results indicate that, in normal plants, the Ndh complex and thylakoid peroxidase (EC 1.11.1.7) provide and remove electrons, respectively, to balance the redox level of the intermediates of cyclic electron transport. In this way, they optimize the generation of the transmembrane H+ gradient of thylakoids and, as a consequence, increase the NPQ and the protection against photo-oxidative stress.  相似文献   

3.
The plastid genomes of several plants contain homologues, termed ndh genes, of genes encoding subunits of the NADH:ubiquinone oxidoreductase or complex I of mitochondria and eubacteria. The functional significance of the Ndh proteins in higher plants is uncertain. We show here that tobacco chloroplasts contain a protein complex of 550 kDa consisting of at least three of the ndh gene products: NdhI, NdhJ and NdhK. We have constructed mutant tobacco plants with disrupted ndhC, ndhK and ndhJ plastid genes, indicating that the Ndh complex is dispensible for plant growth under optimal growth conditions. Chlorophyll fluorescence analysis shows that in vivo the Ndh complex catalyses the post-illumination reduction of the plastoquinone pool and in the light optimizes the induction of photosynthesis under conditions of water stress. We conclude that the Ndh complex catalyses the reduction of the plastoquinone pool using stromal reductant and so acts as a respiratory complex. Overall, our data are compatible with the participation of the Ndh complex in cyclic electron flow around the photosystem I complex in the light and possibly in a chloroplast respiratory chain in the dark.  相似文献   

4.
5.
Polypeptides encoded by plastid ndh genes form a complex (Ndh) which could reduce plastoquinone with NADH. Through a terminal oxidase, reduced plastoquinone would be oxidized in chlororespiration. However, isolated Ndh complex has low activity with plastoquinone and no terminal oxidase has been found in chloroplasts, thus the function of Ndh complex is unknown. Alternatively, thylakoid hydroquinone peroxidase could oxidize reduced plastoquinone with H(2)O(2). By immunoaffinity chromatography, we have purified the plastid Ndh complex of barley (Hordeum vulgare L.) to investigate the electron donor and acceptor specificity. A detergent-containing system was reconstructed with thylakoid Ndh complex and peroxidase which oxidized NADH with H(2)O(2) in a plastoquinone-dependent process. This system and the increases of thylakoid Ndh complex and peroxidase activities under photooxidative stress suggest that the chlororespiratory process consists of the sequence of reactions catalyzed by Ndh complex, peroxidase (acting on reduced plastoquinone), superoxide dismutase, and the non-enzymic one-electron transfer from reduced iron-sulfur protein (FeSP) to O(2). When FeSP is a component of cytochrome b(6).f complex or of the same Ndh complex, O(2) may be reduced with NADH, without requirement of light. Chlororespiration consumes reactive species of oxygen and, eventually, may decrease their production by lowering O(2) concentration in chloroplasts. The common plastoquinone pool with photosynthetic electron transport suggests that chlororespiratory reactions may poise reduced and oxidized forms of the intermediates of cyclic electron transport under highly fluctuating light intensities.  相似文献   

6.
Lennon AM  Prommeenate P  Nixon PJ 《Planta》2003,218(2):254-260
The chloroplasts of many plants contain not only the photosynthetic electron transport chain, but also two enzymes, Ndh and IMMUTANS, which might participate in a chloroplast respiratory chain. IMMUTANS encodes a protein with strong similarities to the mitochondrial alternative oxidase and hence is likely to be a plastoquinol oxidase. The Ndh complex is a homologue of complex I of mitochondria and eubacteria and is considered to be a plastoquinone reductase. As yet these components have not been purified to homogeneity and their expression and orientation within the thylakoid remain ill-defined. Here we show that the IMMUTANS protein, like the Ndh complex, is a minor component of the thylakoid membrane and is localised to the stromal lamellae. Protease digestion of intact and broken thylakoids indicates that both Ndh and IMMUTANS are orientated towards the stromal phase of the membrane in Spinacia oleracea L. Such an orientation is consistent with a role for the Ndh complex in the energisation of the plastid membrane. In expression studies we show that IMMUTANS and the Ndh complex are present throughout the development of both Pisum sativum L. cv Progress No. 9 and Arabidopsis thaliana (L.) Heynh. leaves, from early expansion to early senescence. Interestingly, both the Ndh complex and the IMMUTANS protein accumulate within etiolated leaf tissue, lacking the photosystem II complex, consistent with roles outside photosynthetic electron transport.Abbreviations PQ plastoquinone - PSI, PSII photosystem I, II  相似文献   

7.
The NAD(P)H dehydrogenase (NDH) complex in chloroplasts mediates photosystem I cyclic and chlororespiratory electron transport. Eleven chloroplast genes and three nuclear genes have been identified as encoding Ndh subunits, but the entire subunit composition is still unknown. An Arabidopsis (Arabidopsis thaliana) chlororespiratory reduction (crr3) mutant was isolated based on its lack of transient increase in chlorophyll fluorescence after actinic light illumination; this was due to a specific defect in accumulation of the NDH complex. The CRR3 gene (At2g01590) encodes a novel protein containing a putative plastid-targeting signal and a transmembrane domain. Consistent with the gene structure, CRR3 localized to the membrane fraction of chloroplasts. In addition to the essential function of CRR3 in stabilizing the NDH complex, the NDH complex is also required for the accumulation of CRR3. These results suggest that CRR3 interacts with the NDH complex in the thylakoid membrane. In contrast to other subunits in the chloroplast NDH complex, CRR3 is not conserved in cyanobacteria from which the chloroplast NDH complex is believed to have originated. We propose that CRR3 is a subunit of the NDH complex, which is specific to the chloroplast.  相似文献   

8.
Chloroplasts contain a plastoquinone-NADH-oxidoreductase (Ndh) complex involved in protection against stress and the maintenance of cyclic electron flow. Inactivation of the Ndh complex delays the development of leaf senescence symptoms. Chlorophyll a fluorescence measurements, blue native gel electrophoresis, immunodetection and other techniques were employed to study tobacco (Nicotiana tabacum) Ndh-defective mutants (DeltandhF). The DeltandhF mutants compared with wild-type plants presented: (i) higher photosystem II : photosystem I (PSII : PSI) ratios; (ii) similar or higher levels of ascorbate, carotenoids, thylakoid peroxidase and superoxide dismutase, yield (Phi(PSII)) and maximal photochemical efficiency of PSII levels (F(v)/F(m)) than wild-type plant leaves of the same age; (iii) lower values of nonphotochemical quenching yield (Phi(NPQ)), but not at very high light intensities or during induced leaf senescence; (iv) a similar decrease of antioxidants during senescence; (v) no significant differences in the total foliar area and apical growth rate; and (vi) a production of viable seeds significantly higher than wild-type plants. These results suggest that the Ndh complex is involved in one of the redundant mechanisms that play a safety role in photosynthesis under stress, which has been conserved during evolution, but that its deletion increases fitness when plants are grown under favourable controlled conditions.  相似文献   

9.
In the last few years the presence in thylakoid membranes of chloroplasts of a NAD(P)H-plastoquinone oxidoreductase complex (Ndh complex) homologous to mitochondrial complex I has been well established. Herein, we report the identification of the Ndh complex in barley etioplast membranes. Two plastid DNA-encoded polypeptides of the Ndh complex (NDH-A and NDH-F) were relatively more abundant in etioplast membranes than in thylakoids from greening chloroplasts. Conversion of etioplast into chloroplast, after light exposure of barley seedlings grown in the dark, was accompanied by a decrease in the NADH dehydrogenase activity associated to plastid membranes. Using native-PAGE and immunolabelling techniques we have determined that a NADH specific dehydrogenase activity associated with plastid membranes, which was more active in etioplasts than in greening chloroplasts, contained the NDH-A and NDH-F polypeptides. These results complemented by those obtained through blue-native-PAGE indicated that NDH-A and NDH-F polypeptides are part of a 580 kDa NADH dependent dehydrogenase complex present in etioplast membranes. This finding proves that accumulation of the Ndh complex is independent of light. The decrease in the relative levels and specific activity of this complex during the transition from etioplast to chloroplasts was accompanied by a parallel decrease in the specific activity of peroxidase associated to plastid membranes. Based on the mentioned observations it is proposed that an electron transport chain from NADH to H2O2 could be active in barley etioplasts.  相似文献   

10.
褶纹冠蚌线粒体基因组全序列分析   总被引:1,自引:0,他引:1  
蒋文枰  李家乐  郑润玲  汪桂玲 《遗传》2010,32(2):153-162
采用LA-PCR(Long amplification polymerase chain reaction )扩增方法首次获得褶纹冠蚌(Cristaria plicata)线粒体基因组全序列。分析表明:序列全长15 712 bp, 包括13个蛋白质基因、22个tRNA基因、2个rRNA基因和26个长度为2~328 bp的非编码区。A、T、C、G碱基组成分别为36.54%、27.22%、23.22%、13.02%。大部分基因在L链编码, 其中ND3~ND5、ND4L、COI~COIII、ATP6、ATP8、tRNAAsp和tRNAHis在H链编码。基因排列与同科的射线佩饰真珠蚌(Lampsilis ornata)一致, 与三角帆蚌(Hyriopsis cumingii)在COII和12S rRNA之间存在差异。13个蛋白质基因具有I(AUU、AUC)、V(GUG)、M (AUA、AUG)3种起始密码子, 除ND2终止密码子为不完整的T, 其余基因均为典型的UAA或UAG。22个tRNA中, 除tRNAThr、tRNALys、tRNASer(UCN)、tRNAAsp、tRNAArg、tRNATyr和tRNAMet之外, 其他15个tRNA都具有典型三叶草结构。与其他淡水双壳贝类一样, 褶纹冠蚌具有ATP8基因, 该基因可能与细胞质的渗透压平衡有关。  相似文献   

11.
The chloroplast NDH complex, NAD(P)H dehydrogenase, reduces the plastoquinone pool non-photochemically and is involved in cyclic electron flow around photosystem I (PSI). A transient increase in chlorophyll fluorescence after turning off actinic light is a result of NDH activity. We focused on this subtle change in chlorophyll fluorescence to isolate nuclear mutants affected in chloroplast NDH activity in Arabidopsis by using chlorophyll fluorescence imaging. crr2-1 and crr2-2 (chlororespiratory reduction) are recessive mutant alleles in which accumulation of the NDH complex is impaired. Except for the defect in NDH activity, photosynthetic electron transport was unaffected. CRR2 encodes a member of the plant combinatorial and modular protein (PCMP) family consisting of more than 200 genes in Arabidopsis. CRR2 functions in the intergenic processing of chloroplast RNA between rps7 and ndhB, which is possibly essential for ndhB translation. We have determined the function of a PCMP family member, indicating that the family is closely related to pentatrico-peptide PPR proteins involved in the maturation steps of organellar RNA.  相似文献   

12.
The complete mitochondrial genome sequence of the cockscomb pearl mussel Cristaria plicata, which is an endangered species in South Korea, was sequenced. The circle genome (15,708 bp in size) consists of 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. There were 26 noncoding regions (NCs) found throughout the mitogenome of C. plicata, ranging in size from 2 to 327 bp, and the two largest NC regions, NC286 and NC326, were found between ND5 and tRNA(Gln) (286 bp) and between tRNA(Glu) and ND2 (326 bp), respectively. The 13 mitochondrial protein-coding genes of a female individual of C. plicata collected from Korea (15,708 bp) were compared to those of the Chinese individual (15,712 bp) published before. The result showed that ND3 is the most conserved with 100% nucleotide similarity, and each of the other protein-coding genes has ca. 99%, respectively. The two largest NCs among 26 NCs have totally 98% nucleotide similarity between Korean and Chinese ones.  相似文献   

13.
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-beta,D-maltoside, n-octyl-beta,D-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.  相似文献   

14.
Complex I (NADH: ubiquinone oxidoreductase) is the first complex in the respiratory electron transport chain. Homologs of this complex exist in bacteria, mitochondria and chloroplasts. The minimal complex I from mitochondria and bacteria contains 14 different subunits grouped into three modules: membrane, connecting, and soluble subcomplexes. The complex I homolog (NADH dehydrogenase or Ndh complex) from chloroplasts from higher plants contains genes for two out of three modules: the membrane and connecting subcomplexes. However, there is not much information about the existence of the soluble subcomplex (which is the electron input device in bacterial complex I) in the composition of the Ndh complex. Furthermore, there are contrasting reports regarding the subunit composition of the Ndh complex and its molecular mass. By using blue native (BN)/PAGE and Tricine/PAGE or colorless-native (CN)/PAGE, BN/PAGE and Tricine/PAGE, combined with mass spectrometry, we attempted to obtain more information about the plastidal Ndh complex from maize (Zea mays). Using antibodies, we detected the expression of a new ndh gene (ndhE) in mesophyll (MS) and bundle sheath (BS) chloroplasts and in ethioplasts (ET). We determined the molecular mass of the Ndh complex (550 kDa) and observed that it splits into a 300 kDa membrane subcomplex (containing NdhE) and a 250 kDa subcomplex (containing NdhH, -J and -K). The Ndh complex forms dimers at 1000-1100 kDa in both MS and BS chloroplasts. Native/PAGE of the MS and BS chloroplasts allowed us to determine that the Ndh complex contains at least 14 different subunits. The native gel electrophoresis, western blotting and mass spectrometry allowed us to identify five of the Ndh subunits. We also provide a method that allows the purification of large amounts of Ndh complex for further structural, as well as functional studies.  相似文献   

15.
A possible implication of the plastid NADH-plastoquinone-oxidoreductase (Ndh) complex in the response against ozone-mediated oxidative stress in barley (Hordeum vulgare L.) leaves was investigated. After a 4 h treatment, exposure of barley seedlings to moderate ozone concentrations produced leaf-age-dependent increases in lipid peroxidation, peroxidase, and Ndh complex activities in the thylakoid membranes. A significant amount and activity of the Ndh complex were detected in mature barley leaves, but not in young barley leaves. In fact, young barley leaves behaved like ndh-deficient leaves in most of the aspects studied. When plants were exposed to photo-oxidative light after ozone fumigation, the recovery of Fv/Fm was lower in young leaves than in mature leaves. Ozone treatment significantly decreased non-photochemical quenching (qN) in young leaves, but not in mature leaves. Mature leaves showed higher levels of the energy (DeltamuH+) dependent (qE) component of qN. Treatment with antimycin A, an inhibitor of cyclic electron flow, increased the decay of qN produced by ozone in young leaves, but not in mature ones. The reduction state of plastoquinone increased after ozone treatment in mature dark-adapted leaves and was strongly quenched by far red light. It is proposed that the function of the Ndh complex helps the maintenance of qN, probably through the poising of the redox steady-state level of the intersystem carriers and then by optimizing the rate of cyclic electron flow. This should constitute an age-dependent early response in barley leaves, by contributing to minimize photoinhibition in the presence of ozone and high light.  相似文献   

16.
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-β,d-maltoside, n-octyl-β,d-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.  相似文献   

17.
浙江天童国家森林公园景观的遥感分类与制图   总被引:3,自引:0,他引:3  
利用Landsat-TM多时相数据,采用非监督分类方法,对浙江省天童国家森林公园的景观进行分类。并利用野外实地调查的数据进行检验和校正。结果表明,天童国家森林公园范围内的景观可分为常绿阔叶林、成熟常绿阔叶林、次生常绿-落叶阔叶林、山脊常绿-落叶阔叶林、谷地常绿-落叶阔叶林、林缘灌丛、次生灌丛、针叶林(杉木)、竹林、生长作物的农田/菜园地、旱地、裸土、居住区、水体14个类型,这14个景观类型,根据植物群落学分类的群落复合体(cammunity complex)和群落复合体的地-综合群落学(Geo-synsociology)的方法,归并为山坡常绿阔叶林、常绿落叶阔叶混交林、人工林(针叶林、竹林)、农田、水体、居住区6个景观单元。在景观分类和合并的基础上,对天童国家森林公园的景观进行了制图。  相似文献   

18.
In C(4) plants, granal mesophyll (MS) chloroplasts contain higher photosystem (PS) II and lower PS I activity than agranal bundle sheath (BS) chloroplasts. The maize NAD(P)H dehydrogenase or NAD(P)H-plastoquinone oxidoreductase (also named Ndh complex) from MS and BS chloroplasts, contains at least 11 subunits (NdhA-K) and is homologous to NADH dehydrogenase or Complex I from mitochondria and bacteria. The amount of Ndh complex is higher in BS compared with MS chloroplasts. However, there is little information about the interdependence of the PS II and Ndh complex in chlororespiration and linear and cyclic electron transport in C(4) plants. To characterize the expression of the PS II and Ndh complex in maize plastids, we used cytochrome b559 (cyt b559) antibodies and Ndh immunoglobulins (IgG) to analyze the Ndh complex and PS II in both MS and BS chloroplasts from maize leaves by Western blotting and immunolabeling. In Western blot experiments, it was found that the amount of cyt b559 (a marker for PS II) is 7-8 times higher in MS than BS chloroplasts. Conversely, the NdhH, -J, -K and -E content is 2.5-3 times higher in BS than MS chloroplasts. Similar results were obtained in immunolabeling experiments using Ndh IgGs and cyt b559 antibodies in MS and BS chloroplasts. These data suggest that in BS chloroplasts, ATP could be produced mainly by cyclic electron transport around PS I and Ndh complexes. Conversely, the linear electron transport in BS chloroplasts via PS II could have a lower production of ATP. These results also suggest that the contribution of the Ndh complex in the production of ATP in MS chloroplasts is minimal and that instead, this complex could have a chlororespiratory role.  相似文献   

19.
20.
As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as ‘The Oriental Botanic Garden’ for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号