首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nematodes are very common in the deep sea and are an important component of deep-sea hydrothermal vent communities. In early 2006, the eruption of the underwater volcano at 9°50’N East Pacific Rise wiped out almost the entire faunal communities of the area. This provided us with the opportunity to study nematode primary succession at vents as well as on adjacent seafloor basalt. Nematode abundance and richness were extremely low at all studied sites in late 2006 and 2007, and increased only slightly in 2009. Interestingly, the most abundant species during early succession were also prominent in this area prior to the eruption. Our results show that nematodes are extremely influenced by volcanic eruptions and need a long period of time to colonize the lava-flooded area in greater numbers and richness. We hypothesize that low food availability on the young bare basalt and harsh environmental conditions at early succession vent sites might hinder a more successful nematode establishment. In addition to the newly established active vent sites we also studied an inactive vent site that was not directly hit by the eruption but whose vent fluid had ceased after the eruption. At this inactive and older vent, diversity was also relatively low but was higher than at the younger, newly established sites. In addition to the ecological analyses, we here describe the two most abundant species found at inactive vents, namely Neochromadora aff. poecilosoma De Mann 1893 and Linhomoeus caudipapillosus sp. n.  相似文献   

2.
Microbial communities in a shallow submarine hydrothermal system near Taketomi Island, Japan, were investigated using cultivation-based and molecular techniques. The main hydrothermal activity occurred in a craterlike basin (depth, ~23 m) on the coral reef seafloor. The vent fluid (maximum temperature, >52°C) contained 175 μM H2S and gas bubbles mainly composed of CH4 (69%) and N2 (29%). A liquid serial dilution cultivation technique targeting a variety of metabolism types quantified each population in the vent fluid and in a white microbial mat located near the vent. The most abundant microorganisms cultivated from both the fluid and the mat were autotrophic sulfur oxidizers, including mesophilic Thiomicrospira spp. and thermophilic Sulfurivirga caldicuralii. Methane oxidizers were the second most abundant organisms in the fluid; one novel type I methanotroph exhibited optimum growth at 37°C, and another novel type I methanotroph exhibited optimum growth at 45°C. The number of hydrogen oxidizers cultivated only from the mat was less than the number of sulfur and methane oxidizers, although a novel mesophilic hydrogen-oxidizing member of the Epsilonproteobacteria was isolated. Various mesophilic to hyperthermophilic heterotrophs, including sulfate-reducing Desulfovibrio spp., iron-reducing Deferribacter sp., and sulfur-reducing Thermococcus spp., were also cultivated. Culture-independent 16S rRNA gene clone analysis of the vent fluid and mat revealed highly diverse archaeal communities. In the bacterial community, S. caldicuralii was identified as the predominant phylotype in the fluid (clonal frequency, 25%). Both bacterial clone libraries indicated that there were bacterial communities involved in sulfur, hydrogen, and methane oxidation and sulfate reduction. Our results indicate that there are unique microbial communities that are sustained by active chemosynthetic primary production rather than by photosynthetic production in a shallow hydrothermal system where sunlight is abundant.  相似文献   

3.
Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.  相似文献   

4.
Aims:  Improved knowledge of the bacterial community of the digestive tract is required to enhance the efficiency of digestion in herbivores. This work aimed to study spatial and temporal variations of the bacterial communities in the bovine digestive tract and their correlation with gut environmental parameters.
Methods and Results:  Rumen content and faeces of five cows were sampled for 3 weeks. In addition, reticulum content was sampled during the third week. Bacterial communities were assessed by studying capillary electrophoresis single-stranded conformation polymorphism (CE-SSCP) profiles of 16S rRNA genes. The bacterial community structure differed between the forestomach and faecal contents. The abundance of several operational taxonomic units changed from week to week. Bacterial community structure of the rumen was correlated to propionic acid and NH3–N concentrations.
Conclusions:  The bacterial community of the bovine digestive tract varied in space and time.
Significance and Impact of the Study:  The study of the bacterial communities of the digestive tract in herbivores should be widened from the rumen to the large intestine. The amplitude and origin of the temporal variation of the ruminal bacterial community need to be better understood to improve the control of the fermentative activity in herbivores.  相似文献   

5.
It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0–10?cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both tropical forestry and conservation.  相似文献   

6.
Host–symbiont relationships in hydrothermal vent ecosystems, supported by chemoautotrophic bacteria as primary producers, have been extensively studied. However, the process by which densely populated co‐occurring invertebrate hosts form symbiotic relationships with bacterial symbionts remains unclear. Here, we analyzed gill‐associated symbiotic bacteria (gill symbionts) of five co‐occurring hosts, three mollusks (“Bathymodiolusmanusensis, B. brevior, and Alviniconcha strummeri) and two crustaceans (Rimicaris variabilis and Austinograea alayseae), collected together at a single vent site in the Tonga Arc. We observed both different compositions of gill symbionts and the presence of unshared operational taxonomic units (OTUs). In addition, the total number of OTUs was greater for crustacean hosts than for mollusks. The phylogenetic relationship trees of gill symbionts suggest that γ‐proteobacterial gill symbionts have coevolved with their hosts toward reinforcement of host specificity, while campylobacterial Sulfurovum species found across various hosts and habitats are opportunistic associates. Our results confirm that gill symbiont communities differ among co‐occurring vent invertebrates and indicate that hosts are closely related with their gill symbiont communities. Considering the given resources available at a single site, differentiation of gill symbionts seems to be a useful strategy for obtaining nutrition and energy while avoiding competition among both hosts and gill symbionts.  相似文献   

7.
Diverse microbial communities thrive on and in deep-sea hydrothermal vent mineral deposits. However, our understanding of the inter-field variability in these communities is poor, as limited sampling and sequencing efforts have hampered most previous studies. To explore the inter-field variability in these communities, we used barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA gene to characterize the archaeal and bacterial communities of over 30 hydrothermal deposit samples from six vent fields located along the Eastern Lau Spreading Center. Overall, the bacterial and archaeal communities of the Eastern Lau Spreading Center are similar to other active vent deposits, with a high diversity of Epsilonproteobacteria and thermophilic Archaea. However, the archaeal and bacterial communities from the southernmost vent field, Mariner, were significantly different from the other vent fields. At Mariner, the epsilonproteobacterial genus Nautilia and the archaeal family Thermococcaceae were prevalent in most samples, while Lebetimonas and Thermofilaceae were more abundant at the other vent fields. These differences appear to be influenced in part by the unique geochemistry of the Mariner fluids resulting from active degassing of a subsurface magma chamber. These results show that microbial communities associated with hydrothermal vent deposits in back-arc basins are taxonomically similar to those from mid-ocean ridge systems, but differences in geologic processes between vent fields in a back-arc basin can influence microbial community structure.  相似文献   

8.
The hydrothermal vent crab Shinkaia crosnieri is considered to obtain nutrition from the epibiotic bacteria found on the setae, but previous studies have not shown how nutrients can be transferred from the epibionts to the host. In this study, microscopic observations of S. crosnieri intestinal components detected autofluorescent setae fragments and pigmentation derived from the digestion of epibionts in a dye-stained epibiont tracer experiment. An in vitro digestion experiment with epibiotic populations using an intestinal extract demonstrated the degradation of epibiotic cells by digestive enzymes. A phylogenetic analysis showed that many of the bacterial 16S ribosomal RNA gene sequences obtained from the intestine were closely related to the sequences of the epibionts, thus they were probably derived from the epibionts. A stable isotope tracer experiment also indicated that 13C assimilated by the epibionts provided a carbon (nutrition) source for the host. Both activity measurements and isotope studies showed that chemosynthetic metabolism by the gut microbial components were inactive. Together with the feeding behaviour of living S. crosnieri, these results indicate that S. crosnieri ingests the epibionts using maxillipeds and assimilates them via its digestive organs as a nutrient source. The results of this study elucidate the mechanism of nutritional transfer in ectosymbiosis between chemosynthetic bacteria and deep-sea invertebrates.  相似文献   

9.
Fatty acid biomarker analysis coupled with gas chromatography-isotope ratio mass spectrometry was used to confirm the presence of methanotrophic and thiotrophic bacterial endosymbionts in the tissues of a hydrothermal vent mussel (Bathymodiolus sp.), collected from the Menez Gwen vent field on the mid-Atlantic ridge. Monounsaturated (n-8) fatty acids, which are diagnostic of methanotrophic bacteria, were detected in all three types of tissues examined (gill, posterior adductor, and mantle), although levels were highest in gill tissues where the bacteria were found. Stable-carbon-isotope compositions (δ-13C per mille relative to that of Peedee belemnite) of fatty acids for all three tissues ranged from −24.9 to −34.9‰, which encompasses the range predicted for both thiotroph- and methanotroph-based nutrition. The data suggest that these thio- and methanotrophic bacterial endosymbionts are equally important in the nutrition of the vent mussel at this particular vent site.  相似文献   

10.
Biliary bacteria have been implicated in gallstone pathogenesis, though a clear understanding of their composition and source is lacking. Moreover, the effects of the biliary environment, which is known to be generally hostile to most bacteria, on biliary bacteria are unclear. Here, we investigated the bacterial communities of the biliary tract, duodenum, stomach, and oral cavity from six gallstone patients by using 16S rRNA amplicon sequencing. We found that all observed biliary bacteria were detectable in the upper digestive tract. The biliary microbiota had a comparatively higher similarity with the duodenal microbiota, versus those of the other regions, but with a reduced diversity. Although the majority of identified bacteria were greatly diminished in bile samples, three Enterobacteriaceae genera (Escherichia, Klebsiella, and an unclassified genus) and Pyramidobacter were abundant in bile. Predictive functional analysis indicated enhanced abilities of environmental information processing and cell motility of biliary bacteria. Our study provides evidence for the potential source of biliary bacteria, and illustrates the influence of the biliary system on biliary bacterial communities.  相似文献   

11.
Crustose coralline algae (CCA) are important components of many marine ecosystems. They aid in reef accretion and stabilization, create habitat for other organisms, contribute to carbon sequestration and are important settlement substrata for a number of marine invertebrates. Despite their ecological importance, little is known about the bacterial communities associated with CCA or whether differences in bacterial assemblages may have ecological implications. This study examined the bacterial communities on four different species of CCA collected in Belize using bacterial tag-encoded FLX amplicon pyrosequencing of the V1–V3 region of the 16S rDNA. CCA were dominated by Alphaproteobacteria, Gammaproteobacteria and Actinomycetes. At the operational taxonomic unit (OTU) level, each CCA species had a unique bacterial community that was significantly different from all other CCA species. Hydrolithon boergesenii and Titanoderma prototypum, CCA species that facilitate larval settlement in multiple corals, had higher abundances of OTUs related to bacteria that inhibit the growth and/or biofilm formation of coral pathogens. Fewer coral larvae settle on the surfaces of Paragoniolithon solubile and Porolithon pachydermum. These CCA species had higher abundances of OTUs related to known coral pathogens and cyanobacteria. Coral larvae may be able to use the observed differences in bacterial community composition on CCA species to assess the suitability of these substrata for settlement and selectively settle on CCA species that contain beneficial bacteria.  相似文献   

12.
Marine phytoplankton was studied in January and July 2002 along of four transects: 32°30′N, 29°N, 24°30′N and 24°N. A total of 142 taxa were recorded in this area. The maximal specific richness, both in summer and in winter, was registered around Dakhla (24°N). The global spatiotemporal variability of species richness and specific diversity showed that the most structured and species-rich populations are situated in the coastal areas. The vertical variation of the two parameters showed homogeneity between depth levels. The maximal phytoplanktonic densities are recorded in the southern transects due to the permanent upwelling activity in the southern Atlantic coast. The bathymetric distribution of densities was more heterogeneous during summer, characterized by a high intensity of upwelling. The species Thalassionema nitzschioides, Asterionellopsis glacialis, Melosira, Chaetoceros and Leptocylindrus minimus are indicators of upwelling.  相似文献   

13.
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.  相似文献   

14.
Symbiotic associations between animals and chemoautotrophic bacteria crowd around hydrothermal vents. In these associations, symbiotic bacteria use chemical reductants from venting fluid for the energy to support autotrophy, providing primary nutrition for the host. At vents along the Eastern Lau Spreading Center, the partially oxidized sulfur compounds (POSCs) thiosulfate and polysulfide have been detected in and around animal communities but away from venting fluid. The use of POSCs for autotrophy, as an alternative to the chemical substrates in venting fluid, could mitigate competition in these communities. To determine whether ESLC symbioses could use thiosulfate to support carbon fixation or produce POSCs during sulfide oxidation, we used high-pressure, flow-through incubations to assess the productivity of three symbiotic mollusc genera—the snails Alviniconcha spp. and Ifremeria nautilei, and the mussel Bathymodiolus brevior—when oxidizing sulfide and thiosulfate. Via the incorporation of isotopically labelled inorganic carbon, we found that the symbionts of all three genera supported autotrophy while oxidizing both sulfide and thiosulfate, though at different rates. Additionally, by concurrently measuring their effect on sulfur compounds in the aquaria with voltammetric microelectrodes, we showed that these symbioses excreted POSCs under highly sulfidic conditions, illustrating that these symbioses could represent a source for POSCs in their habitat. Furthermore, we revealed spatial disparity in the rates of carbon fixation among the animals in our incubations, which might have implications for the variability of productivity in situ. Together, these results re-shape our thinking about sulfur cycling and productivity by vent symbioses, demonstrating that thiosulfate may be an ecologically important energy source for vent symbioses and that they also likely impact the local geochemical regime through the excretion of POSCs.  相似文献   

15.
16.
We performed gene-based comparative FISH mapping between a wild silkmoth, Samia cynthia ssp. with a low number of chromosomes (2n = 25-28) and the model species, Bombyx mori (2n = 56), in order to identify the genomic components that make up the chromosomes in a low-number karyotype. Mapping of 64 fosmid probes containing orthologs of B. mori genes revealed that the homologues of either two or four B. mori chromosomes constitute the S. c. ricini (Vietnam population, 2n = 27??/28??, Z0/ZZ) autosomes. Where tested, even the gene order was conserved between S. c. ricini and B. mori. This was also true for the originally autosomal parts of the neo-sex chromosomes in S. c. walkeri (Sapporo population, 2n = 26??/26??, neo-Wneo-Z/neo-Zneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n = 25??/26??, neo-WZ1Z2/Z1Z1Z2Z2). The results are evidence for an internal stability of lepidopteran chromosomes even when all autosomes had undergone fusion processes to form a low-number karyotype.  相似文献   

17.
It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada’s oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.  相似文献   

18.
Microbial communities inhabiting above-ground parts of plants affect their host's development, fitness and function. Although studies on plant-associated microbes are of growing interest, environmental drivers of flower microbiomes in particular are poorly characterized. In this study, we investigated flower and leaf epiphytic bacterial microbiomes of Ranunculus acris and Trifolium pratense using metabarcoding of 16S ribosomal DNA in three German bioregions and along land-use intensity gradients. Our data suggests that the structures of bacterial communities clearly differed between plant species and tissue types. Also, floral bacterial communities of R. acris showed higher variability in comparison to T. pratense. Bacteria usually associated with pollinators were found solely in flower samples, while bacteria usually associated with the rhizosphere were only present in high abundances on leaves. We identified Pseudomonadaceae, Enterobacteriaceae and Sphingomonadaceae as the most abundant taxa on flowers, while Sphingomonadaceae, Methylobacteriaceae and Cytophagaceae dominated bacterial communities on leaves. We found that bacterial communities did not differ between long-distant regions. However, there was a turnover within each bioregion between short-distant locations. High land use intensity caused phylogenetically less diverse and more homogenous bacterial communities with an exception of T. pratense flowers. This was associated with a loss of rare bacterial families. Intensification of mowing affected the bacterial communities associated with leaves of T. pratense and fertilization led to more homogenous flower and leaf communities of R. acris, while grazing had no effects on the bacterial community composition. However, dominant taxa were not affected by land use intensification. Despite that, we identified indicator taxa for regularly disturbed environments in flower microbiomes. In conclusion, our study contributes to the knowledge about microbial community structures of the phyllosphere and extends the understanding of their community dynamics with respect to biogeographical separation and anthropogenic changes of the environment.  相似文献   

19.
Nitrogen (N) deposition poses a serious threat to terrestrial biodiversity and alters plant and soil microbial community composition. Species turnover and nestedness reflect the underlying mechanisms of variations in community composition. However, it remains unclear how species turnover and nestedness contribute to different responses of taxonomic groups (plants and soil microbes) to N enrichment. Here, based on a 13‐year consecutive multi‐level N addition experiment in a semiarid steppe, we partitioned community β‐diversity into species turnover and nestedness components and explored how and why plant and microbial communities reorganize via these two processes following N enrichment. We found that plant, soil bacterial, and fungal β‐diversity increased, but their two components showed different patterns with increasing N input. Plant β‐diversity was mainly driven by species turnover under lower N input but by nestedness under higher N input, which may be due to a reduction in forb species, with low tolerance to soil Mn2+, with increasing N input. However, turnover was the main contributor to differences in soil bacterial and fungal communities with increasing N input, indicating the phenomenon of microbial taxa replacement. The turnover of bacteria increased greatly whereas that of fungi remained within a narrow range with increasing N input. We further found that the increased soil Mn2+ concentration was the best predictor for increasing nestedness of plant communities under higher N input, whereas increasing N availability and acidification together contributed to the turnover of bacterial communities. However, environmental factors could explain neither fungal turnover nor nestedness. Our findings reflect two different pathways of community changes in plants, soil bacteria, and fungi, as well as their distinct community assembly in response to N enrichment. Disentangling the turnover and nestedness of plant and microbial β‐diversity would have important implications for understanding plant–soil microbe interactions and seeking conservation strategies for maintaining regional diversity.  相似文献   

20.
Recent studies have described the bacterial community residing in the guts of giant pandas, together with the presence of lignocellulolytic enzymes. However, a more comprehensive understanding of the intestinal microbial composition and its functional capacity in giant pandas remains a major goal. Here, we conducted a comparison of bacterial, fungal and homoacetogenic microbial communities from fecal samples taken from two geriatric and two adult captive giant pandas. 16S rDNA amplicon pyrosequencing revealed that Firmicutes and Proteobacteria are the most abundant microbiota in both geriatric and adult giant pandas. However, members of phylum Actinobacteria found in adult giant pandas were absent in their geriatric counterparts. Similarly, ITS1 amplicon pyrosequencing identified developmental changes in the most abundant fungal classes from Sordariomycetes in adult pandas to Saccharomycetes in geriatric pandas. Geriatric pandas exhibited significantly higher abundance of a potential probiotic fungus (Candida tropicalis) as compared to adult pandas, indicating their importance in the normal digestive physiology of aged pandas. Our study also reported the presence of a lignocellulolytic white-rot fungus, Perenniporia medulla-panis, and the evidence of novel homoacetogens residing in the guts of giant pandas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号