首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
IL-21 is a class I cytokine that exerts pleiotropic effects on both innate and adaptive immune responses. It signals through a heterodimeric receptor complex consisting of the IL-21 receptor (IL-21R) and the common γ-chain. A hallmark of the class I cytokine receptors is the class I cytokine receptor signature motif (WSXWS). The exact role of this motif has not been determined yet; however, it has been implicated in diverse functions, including ligand binding, receptor internalization, proper folding, and export, as well as signal transduction. Furthermore, the WXXW motif is known to be a consensus sequence for C-mannosylation. Here, we present the crystal structure of IL-21 bound to IL-21R and reveal that the WSXWS motif of IL-21R is C-mannosylated at the first tryptophan. We furthermore demonstrate that a sugar chain bridges the two fibronectin domains that constitute the extracellular domain of IL-21R and anchors at the WSXWS motif through an extensive hydrogen bonding network, including mannosylation. The glycan thus transforms the V-shaped receptor into an A-frame. This finding offers a novel structural explanation of the role of the class I cytokine signature motif.  相似文献   

2.
The most promising approach to targeting the tumor-growth-promoting actions of prolactin (PRL) mediated by its autocrine/paracrine pathway has been the development of specific PRL receptor (PRLR) antagonists. However, the optimization of such antagonists requires a thorough understanding of the activation mechanism of PRLR. We have thus conducted a systematic X-ray crystallographic study in order to visualize the successive steps of PRLR activation by PRL. We report here the structure at 3.35 Å resolution of the 1:2 complex between natural PRL and two PRLR chains (PRLR1 and PRLR2), corresponding to the final activated state of PRLR. Further than our previously published structure involving an affinity-matured PRL variant, this structure allowed to visualize for the first time the loop L5 spanning PRLR2 residues Thr133-Phe140, revealing its central implication for the three intermolecular interfaces of the complex. We equally succeeded in obtaining a comprehensive picture of the PRLR-PRLR dimerization interface, also called stem-stem interface. Site-directed mutagenesis was conducted to probe the energetic importance of stem-stem contacts highlighted by the structure. Surprisingly, in spite of significant structural differences between the PRL/PRLR2 complex and the 1:2 growth hormone/growth hormone receptor complex, our mutational data suggest that hot-spot residues that stabilize the receptor dimerization interface are equivalent in the two complexes. This study provides a new overall picture of the structural features of PRLR involved in stabilizing its complex with PRL.  相似文献   

3.
4.
5.
6.
The objective of this study was to determine if a functional heterodimer of prolactin receptor (PRLR) and growth hormone receptor (GHR) can be formed in humans. A novel ligand was designed that is composed of a GHR antagonist (B2036) and a PRLR antagonist (G129R) fused in tandem (B2036-G129R). Because both B2036 and G129R are binding site 2 inactive antagonists, the B2036-G129R fusion protein, in theory contains only two functional binding site 1s: one for GHR and one for PRLR. We examined the behavior of this chimeric ligand in cell lines known to express GHR, PRLR, or both receptors. The data presented show that B2036-G129R is inactive in IM-9 cells that express only GHR or Nb2 cells that express PRLR. In T-47D cells that coexpress PRLR and GHR, B2036-G129R activates JAK2/STAT5 signaling. These findings provide evidence that B2036-G129R is able to activate signal transduction through a heterodimer of PRLR and GHR in humans.  相似文献   

7.
Chicken prolactin receptor (cPRLR) deciphered from the cDNA sequence showed a unique double antenna structure in its extracellular domain. The predicted cPRLR preprotein was composed of 831 amino acids and contained a signal peptide and a transmembrane region. The extracellular domain comprised 438 residues, and was divided into two tandemly repeated, highly homologous units, each of which corresponded to the extracellular domains of mammalian prolactin receptors. Both extracellular units of cPRLR possessed two structural features characteristic of the ligand binding units of cytokine/prolactin receptor family, namely two pairs of cysteine residues and a WSXWS motif. These findings strongly suggest that cPRLR contains two repeated ligand binding units, that is a double antenna structure. The cPRLR gene is expressed in a wide range of tissues of laying hen.  相似文献   

8.
The precise mechanism by which the binding of a class I cytokine to the extracellular domain of its corresponding receptor transmits a signal through the cell membrane remains unclear. Receptor activation involves a cytokine-receptor complex with a 1∶2 stoichiometry. Previously we used our transient-complex theory to calculate the rate constant of the initial cytokine-receptor binding to form a 1∶1 complex. Here we computed the binding pathway leading to the 1∶2 activation complex. Three cytokine systems (growth hormone, erythropoietin, and prolactin) were studied, and the focus was on the binding of the extracellular domain of the second receptor molecule after forming the 1∶1 complex. According to the transient-complex theory, translational and rotation diffusion of the binding entities bring them together to form a transient complex, which has near-native relative separation and orientation but not the short-range specific native interactions. Subsequently conformational rearrangement leads to the formation of the native complex. We found that the changes in relative orientations between the two receptor molecules from the transient complex to the 1∶2 native complex are similar for the three cytokine-receptor systems. We thus propose a common model for receptor activation by class I cytokines, involving combined scissor-like rotation and self-rotation of the two receptor molecules. Both types of rotations seem essential: the scissor-like rotation separates the intracellular domains of the two receptor molecules to make room for the associated Janus kinase molecules, while the self-rotation allows them to orient properly for transphosphorylation. This activation model explains a host of experimental observations. The transient-complex based approach presented here may provide a strategy for designing antagonists and prove useful for elucidating activation mechanisms of other receptors.  相似文献   

9.
The erythropoietin receptor (EPOR) is a member of the newly identified cytokine receptor superfamily. A common sequence motif, Trp-Ser-X-Trp-Ser (WSXWS), near the transmembrane domain is highly conserved in this family. To determine the function of this motif, we constructed deletion and insertion mutations in this part of the EPOR and introduced them into an interleukin-3 (IL-3)-dependent hematopoietic Ba/F3 cell line. Cells expressing the wild-type EPOR displayed 1,500 erythropoietin (EPO)-binding sites/cell with a single affinity of about 300 pM and proliferate in the presence of IL-3 or EPO. Ba/F3 cells expressing receptors mutated in the WSXWS motif displayed little EPO binding on the cell surface and did not grow in the presence of EPO. The mutant receptors were retained in the endoplasmic reticulum (ER) and, as such, were unable to bind EPO. A single Gly insertion between the two WS sequences caused defects in receptor structure and function similar to mutations lacking all or part of the WSXWS motif. The EPOR can be activated, resulting in proliferation independent of EPO either by an Arg129 to Cys point mutation or by association with the Friend spleen focus-forming virus (SFFV) envelope glycoprotein gp55. Introduction of the point mutation (Arg129 to Cys) did not activate any of the receptors mutated in the WSXWS motif. Moreover, gp55 did not activate the mutant receptors in Ba/F3 cells. Our study indicates that the WSXWS motif is critical for protein folding, ligand-binding, and signal transduction.  相似文献   

10.
The ANP receptor is a single-transmembrane sequence receptor coupled to guanylate cyclase (GCase). It belongs to a family of GCase-coupled receptors that share a common overall molecular configuration. Collectively, theses GCase-coupled receptors belong to a larger family of single-transmembrane sequence receptors that include growth hormone and cytokine receptors. The signal transduction mechanism of these receptors has not been thoroughly understood. Receptor dimerization (or oligomerization) has been suggested as the mechanism. However, at least for the ANP receptor, dimerization has been seen to occur in the absence of the ligand, suggesting that an additional, as yet unknown effect of hormone binding is responsible for receptor activation. To understand the signaling mechanism, some of the functions and subsites of the ANP receptor critical for signaling have been identified, including the binding stoichiometry, receptor self-association, the juxtamembrane hinge structure containing a signature motif critical for GCase signaling, ANP-binding site residues, chloride-dependence of ANP binding, disulfide linkages, and glycosylation structures. These structures and the functional sites have been identified in the crystal structure of dimerized recombinant extracellular domain of the ANP receptor. The intracellular domain contains a kinase-homologous domain that regulates the activity of the GCase domain responding to ANP binding and also to binding of the allosteric effector ATP. Moreover, this regulatory role of the kinase-homologous domain is modulated by its own phosphorylated state. Although considerable data have been accumulated, the mechanism of ANP receptor signaling has not been well defined. Further studies are necessary to understand how ANP binds to the receptor, what conformational effect is caused by ANP binding, how this effect is transduced across the cell membrane, and how this transmembrane effect leads to stimulation of the GCase catalytic activity.  相似文献   

11.
Progress in prolactin receptor research   总被引:1,自引:0,他引:1  
  相似文献   

12.
The crystal structure of the complex between an N-terminally truncated G129R human prolactin (PRL) variant and the extracellular domain of the human prolactin receptor (PRLR) was determined at 2.5A resolution by x-ray crystallography. This structure represents the first experimental structure reported for a PRL variant bound to its cognate receptor. The binding of PRL variants to the PRLR extracellular domain was furthermore characterized by the solution state techniques, hydrogen exchange mass spectrometry, and NMR spectroscopy. Compared with the binding interface derived from mutagenesis studies, the structural data imply that the definition of PRL binding site 1 should be extended to include residues situated in the N-terminal part of loop 1 and in the C terminus. Comparison of the structure of the receptor-bound PRL variant with the structure reported for the unbound form of a similar analogue ( Jomain, J. B., Tallet, E., Broutin, I., Hoos, S., van Agthoven, J., Ducruix, A., Kelly, P. A., Kragelund, B. B., England, P., and Goffin, V. (2007) J. Biol. Chem. 282, 33118-33131 ) demonstrates that receptor-induced changes in the backbone of the four-helix bundle are subtle, whereas large scale rearrangements and structuring occur in the flexible N-terminal part of loop 1. Hydrogen exchange mass spectrometry data imply that the dynamics of the four-helix bundle in solution generally become stabilized upon receptor interaction at binding site 1.  相似文献   

13.
14.
15.
The heterozygous prolactin (PRL) receptor (PRLR +/-) mouse fails to develop a fully functional mammary gland at the end of the first pregnancy and shows markedly impaired lobuloalveolar development and milk secretion in young females. The PRLR is expressed ubiquitously, with various proportions of long and short isoforms in different tissues. Conflicting data have appeared on the putative role of the receptor short forms, with both agonist and antagonistic actions proposed. To assess whether the mouse PR-1 short isoform of the PRLR is potentially able to transduce a signal, we overexpressed it in heterozygous mice and investigated its effect on the rescue of mammary development. PRLR+/- mice were not able to develop a functional mammary gland, but restoration of mammary alveolar development and an increase in the expressions of casein and whey acidic protein genes were observed in transgenic PRLR+/- mice expressing the short form of the PRLR, leading to a complete rescue of mammary gland development and function in young females. These results demonstrate that PR-1, the short form of the PRLR, can improve mammary development in PRLR+/- mice, which compensates for the haploinsufficiency of the receptor long form; this effect is probably caused by accelerated proliferation and an activation of the PRLR signaling cascade, resulting in activation of target genes involved in mammary development and milk synthesis.  相似文献   

16.
Class I cytokine receptors efficiently transfer activation signals from the extracellular space to the cytoplasm and play a dominant role in growth control and differentiation of human tissues. Although a significant body of literature is devoted to this topic, a consistent mechanistic picture for receptor activation in the membrane environment is still missing. Using the interleukin-4 receptor (IL-4R) as an example, we propose that the membrane-proximal stem-loop of the extracellular domains contains pivotal elements of a rotational switch. Interfacial energies of amino acid side-chains contained in the highly conserved WSXWS at the surface of the lipid bilayer suggest a new functional role for this motif. A generic activation mechanism for this receptor class is presented, which may impact the design of a new generation of biophysical assay systems.  相似文献   

17.
18.
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.  相似文献   

19.

Background

The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear.

Methodology/Principal Findings

PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARγ2, its coactivator PGC-1α, uncoupling protein 1 (UCP1) and the β3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2.

Conclusions

Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia.  相似文献   

20.
Like many other receptor tyrosine kinases (RTKs), platelet-derived growth factor (PDGF) receptor β (PDGFR-β) is internalized and degraded in lysosomes in response to PDGF stimulation, which regulates many aspects of cell signalling. However, little is known about the regulation of PDGFR-β endocytosis. Given that ligand binding is essential for the rapid internalization of RTKs, the events induced by the ligand binding likely contribute to the regulation of ligand-induced RTK internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. In this communication, we examined the role of PDGFR-β kinase activity, PDGFR-β dimerization and PDGFR-β C-terminal motifs in PDGF-induced PDGFR-β internalization. We showed that inhibition of PDGFR-β kinase activity by chemical inhibitor or mutation did not block PDGF-induced PDGFR-β endocytosis, suggesting that the kinase activity is not essential. We further showed that dimerization of PDGFR-β is essential and sufficient to drive PDGFR-β internalization independent of PDGFR-β kinase activation. Moreover, we showed that the previously reported 14 amino acid sequence 952-965 is required for PDGF-induced PDGFR-β internalization. Most importantly, we showed that this PDGFR-β internalization motif is exchangeable with the EGFR internalization motif (1005-1017) in mediating ligand-induced internalization of both PDGFR-β and EGFR. This indicates a common mechanism for the internalization of both PDGFR-β and EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号