首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a high light-throughput spectroscopic dosimeter system that is able to noninvasively measure luminescence signals of singlet oxygen (1O2) produced during photodynamic therapy (PDT) using a CW (continuous wave) light source. The system is based on a compact, fiber-coupled, high collection efficiency spectrometer (>50% transmittance) designed to maximize optical throughput but with sufficient spectral resolution (~7 nm). This is adequate to detect 1O2 phosphorescence in the presence of strong luminescence background in vivo. This system provides simultaneous acquisition of multiple spectral data points, allowing for more accurate determination of luminescence baseline via spectral fitting and thus the extraction of 1O2 phosphorescence signal based solely on spectroscopic decomposition, without the need for time-gating. Simultaneous collection of photons at different wavelengths improves the quantum efficiency of the system when compared to sequential spectral measurements such as filter-wheel or tunable-filter based systems. A prototype system was tested during in vivo PDT tumor regression experiments using benzoporphyrin derivative (BPD) photosensitizer. It was found that the treatment efficacy (tumor growth inhibition rate) correlated more strongly with 1O2 phosphorescence than with PS fluorescence. These results indicate that this high photon-collection efficiency spectrometer instrument may offer a viable option for real-time 1O2 dosimetry during PDT treatment using CW light.  相似文献   

2.
Prion disorders are fatal neurodegenerative diseases caused by the autocatalytic conversion of a natively occurring prion protein (PrPC) into its misfolded infectious form (PrPTSE). The proven resistance of PrPTSE to common disinfection procedures increases the risk of prion transmission in medical settings. Herein, we present the effective photodynamic inactivation (PDI) of prions by disulfonated hydroxyaluminum phthalocyanine (AlPcOH(SO3)2) utilizing two custom‐built red light sources. The treatment eliminates PrPTSE signal in infectious mouse brain homogenate with efficiency that depends on light intensity but has a low effect on the overall protein content. Importantly, singlet oxygen (O2(1Δg)) is the only species significantly photogenerated by AlPcOH(SO3)2, and it is responsible for the PDI of prions. More intensive light conditions show not only higher O2(1Δg) production but also decreases in AlPcOH(SO3)2 photostability. Our findings suggest that PDI by AlPcOH(SO3)2‐generated O2(1Δg) represents a promising approach for prion inactivation that may be useful in future decontamination strategies for delicate medical tools.  相似文献   

3.
The luminescene of 1O2 (1270 nm) has been observed upon illumination of air saturated solutions of different porphyrins and their complexes with Zn in CCl4. In solutions of Co-, Cu-, Ni- and Fe-porphyrins this luminescence has not been revealed. All the porphyrins studied have shown to quench 1O2, the rate constants of the "physical" and "chemical" quenching being measured. The physical way of quenching is found to be much more effective. The quenching activity of the pigments depends greatly on the presence and nature of the central metall atom incorporated into porphyrin (H2 less than Cu less than Zn less than Co approximately Ni approximately Fe) increases with hydrogenation of the semiisolated double bonds (porphyrins are less active than chlorins and bacteriochlorins).  相似文献   

4.
Understanding of the biology of photodynamic therapy (PDT) has expanded tremendously over the past few years. However, in the clinical situation, it is still a challenge to match the extent of PDT effects to the extent of the disease process being treated. PDT requires drug, light and oxygen, any of which can be the limiting factor in determining efficacy at each point in a target organ. This article reviews techniques available for monitoring tissue oxygenation during PDT. Point measurements can be made using oxygen electrodes or luminescence-based optodes for direct measurements of tissue pO2, or using optical spectroscopy for measuring the oxygen saturation of haemoglobin. Imaging is considerably more complex, but may become feasible with techniques like BOLD MRI. Pre-clinical studies have shown dramatic changes in oxygenation during PDT, which vary with the photosensitizer used and the light delivery regimen. Better oxygenation throughout treatment is achieved if the light fluence rate is kept low as this reduces the rate of oxygen consumption. The relationship between tissue oxygenation and PDT effect is complex and remarkably few studies have directly correlated oxygenation changes during PDT with the final biological effect, although those that have confirm the value of maintaining good oxygenation. Real time monitoring to ensure adequate oxygenation at strategic points in target tissues during PDT is likely to be important, particularly in the image guided treatment of tumours of solid organs.  相似文献   

5.
Characterization of protein damage during photosensitization of chlorin e6-treated cells was performed using the green fluorescent protein (GFP). The GFP-chromophore damage caused by singlet oxygen was studied in COS 7 kidney cells and E. coli bacteria following light irradiation. Electron spin resonance (ESR) revealed the generation of endogenous singlet oxygen (1O2) by photoactivated GFP, an effect similar to that produced by the exogenous photosensitizer chlorin e6. A light dose-dependent photobleaching effect of GFP was pronounced at low pH or upon photosensitization with chlorin e6. However, the 1O2 quenchers beta-carotene and sodium azide minimized GFP photo-bleaching. Gel electrophoresis of photosensitized GFP followed by fluorescence multi-pixel spectral imaging revealed the binding of chlorin e6 to GFP, affecting the photobleaching efficacy. Fluorescence multi-pixel spectral imaging of GFP-transfected COS 7 cells demonstrated the presence of GFP in the cytoplasm and nucleus, while chlorin e6 was found to be concentrated in the perinuclear vesicles. Exposure of the cells to light induced GFP photobleaching in the close vicinity of chlorin e6 vesicles. We conclude that photoactivated GFP generates endogenous 1O2, inducing chromophore damage, which can be enhanced by the cooperation of exogenous chlorin e6.  相似文献   

6.
In photodynamic therapy, intermittent irradiation modes that incorporate an interval between pulses are believed to decrease the effect of hypoxia by permitting an interval of re-oxygenation. The effect of the irradiation intermittency factor (the ratio of the irradiation pulse time to the total irradiation time) on singlet oxygen formation and inflammatory cytokine production was examined using azulene as a photosensitizer. Effects of difference intermittency factor on singlet oxygen formation and inflammatory cytokine were examined. Azulene solutions (1/10 μM) were irradiated with a 638-nm 500 mW diode laser in fractionation (intermittency factor of 5 or 9) or continuous mode using 50 mW/cm2 at 4 or 8 J/cm2. Singlet oxygen measurement was performed using a dimethyl anthracene probe. Peripheral blood mononuclear cells (PBMC) were stimulated by 10 ng/ml rhTNF-α for 6 h, before addition of 1 and 10 μM azulene solutions and irradiation. PGE2 measurement was undertaken using a human PGE2 ELISA kit. Kruskal-Wallis with Dunn Bonferroni test was used for statistical analyses at p < 0.05.Irradiation of 1 μM azulene+4 J/cm2+intermittency factor of 9 increased singlet oxygen 3-fold (p < 0.0001). Irradiation of 10 μM azulene at either 4 J/cm2+intermittency of 9 or 8 J/cm2+intermittency factor of 5 reduced PGE2 expression in PBMCs to non-inflamed levels. Thus, at 50 mW/cm2, 10 μM azulene-mediated photodynamic therapy with a high intermittency factor and a low energy density generated sufficient singlet oxygen to suppress PGE2 in Inflamed PBMCs.  相似文献   

7.
UVA irradiation (320-400 nm) comprises about 95 percent of incident midday solar ultraviolet irradiation. It penetrates skin much deeper than UVB irradiation. The absorption of UVA irradiation in endogenous chromophores frequently leads to the generation of reactive oxygen species such as singlet oxygen ((1)O(2)). (1)O(2) is an important biochemical intermediate in multiple biological processes. Beside other procedures, the direct detection of (1)O(2) by its luminescence is a powerful tool that helps to understand the generation of (1)O(2) during UVA exposure in solution, in vitro and in vivo. This article describes the endogenous photosensitizers, their ability to generate (1)O(2) under UVA irradiation, and the detection technology to visualize the action of (1)O(2).  相似文献   

8.
Sulfonamides of halogenated bacteriochlorins bearing Cl or F substituents in the ortho positions of the phenyl rings have adequate properties for photodynamic therapy, including strong absorption in the near-infrared (λ(max) ≈ 750 nm, ε ≈ 10(5) M(-1) cm(-1)), controlled photodecomposition, large cellular uptake, intracellular localization in the endoplasmic reticulum, low cytotoxicity, and high phototoxicity against A549 and S91 cells. The roles of type I and type II photochemical processes are assessed by singlet oxygen luminescence and intracellular hydroxyl radical detection. Phototoxicity of halogenated sulfonamide bacteriochlorins does not correlate with singlet oxygen quantum yields and must be mediated both by electron transfer (superoxide ion, hydroxyl radicals) and by energy transfer (singlet oxygen). The photodynamic efficacy is enhanced when cellular death is induced by both singlet oxygen and hydroxyl radicals.  相似文献   

9.
Molecular Biology Reports - Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and...  相似文献   

10.
This study evaluated the effect of antimicrobial photodynamic therapy (aPDT) on S. mutans using diacetylcurcumin (DAC) and verified DAC toxicity. In vitro, S. mutans biofilms were exposed to curcumin (CUR) and DAC and were light-irradiated. Biofilms were collected, plated and incubated for colony counts. DAC and CUR toxicity assays were conducted with Human Gingival Fibroblast cells (HGF). In vivo, G. mellonella larvae were injected with S. mutans and treated with DAC, CUR and aPDT. The hemolymph was plated and incubated for colony counts. Significant reductions were observed when DAC and CUR alone were used and when aPDT was applied. HGF assays demonstrated no differences in cell viability for most groups. DAC and CUR reduced the S. mutans load in G. mellonella larvae both alone and with aPDT. Systematic toxicity assays on G. mellonella demonstrated no effect of DAC and CUR or aPDT on the survival curve.  相似文献   

11.
Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels–which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain–are subject to modification by 1O2. To increase the site specificity of 1O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame 1O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves 1O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a 1O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, 1O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, 1O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for 1O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying 1O2 modifications at the molecular level.  相似文献   

12.
《Free radical research》2013,47(12):1383-1397
Abstract

The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defined by the dimensions of the laser beam as a consequence of the inherent inhomogeneity of the cell. Upon irradiation at a wavelength readily absorbed by PpIX in a one-photon transition, this scattering of light eliminated any advantage accrued to the use of focused irradiation. However, upon irradiation at a longer wavelength where PpIX can only absorb light under non-linear two-photon conditions, meaningful intracellular resolution was achieved in the small spatial domain where the light intensity was high enough for absorption to occur.  相似文献   

13.
The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defined by the dimensions of the laser beam as a consequence of the inherent inhomogeneity of the cell. Upon irradiation at a wavelength readily absorbed by PpIX in a one-photon transition, this scattering of light eliminated any advantage accrued to the use of focused irradiation. However, upon irradiation at a longer wavelength where PpIX can only absorb light under non-linear two-photon conditions, meaningful intracellular resolution was achieved in the small spatial domain where the light intensity was high enough for absorption to occur.  相似文献   

14.
Photodynamic inactivation of prions by disulfonated hydroxyaluminum phthalocyanine. Further details can be found in the article by Marie Kostelanska, Jaroslav Freisleben, Zdenka Backovska Hanusova, et al. ( e201800430 ).

  相似文献   


15.
Zinc-coproporphyrin III (Zincphyrin) acts efficiently as a photodynamic therapy (PDT) agent in mice, while it shows no tumor cell-killing activity in vitro and has a high LD50 (low toxicity) in mice. It appears to have advantages over other porphyrins as a practical PDT reagent. In order to examine the action mechanism of Zincphyrin in PDT, we evaluated the photochemical characteristics of Zincphyrin by measurement of the near-infrared emission at 1268 nm, which provides direct evidence for formation of 1O2. Intense emission was observed in the presence of Zincphyrin, and was completely inhibited by NaN3, a 1O2 scavenger. Based on a quenching study, the rate constant of the reaction of 1O2 with NaN3 was determined to be 1.5–3.5 M–1 s–1, which is close to the reported value (3.8×108 M–1 s–1). The intensity of the 1O2-specific emission was proportional to both the laser power and the concentration of Zincphyrin. The fluorescence quantum yield of Zincphyrin was 0.004 in phosphate buffer (100 mM, pH 7.4), which indicates that the excited state decays via other pathway(s) faster than through the fluorescence emission pathway. The lifetime of the triplet state of Zincphyrin (210 s) was relatively long compared to that of other porphyrins, such as hematoporphyrin (Hp) (40 s), coproporphyrin I (50 s), or coproporphyrin III (36 s). These results demonstrate the photodynamic generation of 1O2 by Zincphyrin.  相似文献   

16.
Photosensitizer attracts great attentions and has potential applications in cancer treatment. We developed here a novel pyridone-containing phenalenone-based (PPN-PYR) photosensitizer with excellent singlet oxygen generating ability. Upon light irradiation, PPN-PYR can produce singlet oxygen and transform to its endoperoxide form which in turn release singlet oxygen via thermal cycloreversion at dark. The ability of PPN-PYR to generate reactive oxygen species (ROS) in cell culture and induce corresponding apoptosis both at dark and under light was demonstrated. The efficient PDT performance of PPN-PYR was further verified on cancer cell in vitro. Our study indicate that PPN-PYR can alleviate tumor hypoxia problem and enhance the availability of intermittent photodynamic therapy.  相似文献   

17.
The photodynamic therapy technique involving pulsed oxygen depletion (POD) in tissue by long high-energy pulses of light was studied theoretically. The possibility of creating a uniform distribution of a therapeutic dose throughout a tumor using both surface and interstitial irradiation is shown. Possible thickness of the treated tissue layer is estimated. The comparison with other methods of nonlinear photodynamic therapy is made.  相似文献   

18.
This paper reports synthesis and photobiological properties of a novel chlorin photosensitizer BCPD-18MA. Cytotoxicity, cellular uptake, subcellular location, biodistribution, photodynamic therapy (PDT) efficiency, cell apoptosis as well as histological analysis of the liposomal-delivered BCPD-18MA (L-BCPD-18MA) was studied using mammary adenocarcinoma MDA-MB-231 cells and Lewis lung carcinoma (LLC) implanted in C57BL/6 mice as experimental models. The results showed that L-BCPD-18 was incorporated rapidly into MDA-MB-231 cells and localized partially in mitochondria. L-BCPD-18 induced cell apoptosis by PDT. In addition, biodistribution of L-BCPD-18MA in LLC-bearing mice demonstrated a fast clearance rate of the drug and good skin-related tumor selectivity. Finally, entrapment of BCPD-18 into liposomes resulted in a dramatic impairment of dark toxicity and a notable improvement of PDT antitumor efficacy in vitro. Compared with liposomal-delivered BPDMA (L-BPDMA), L-BCPD-18MA exhibited low dark toxicity and high PDT efficiency on MDA-MB-231 cells. The photodynamic efficacy of L-BCPD-18MA on LLC-bearing mice is comparable to that of L-BPDMA, implying that L-BCPD-18MA is a potential antitumor candidate for PDT.  相似文献   

19.
Real-time investigation of molecular recognition between protein and the photosensitizer of photodynamic therapy (PDT) was carried out by a quartz crystal microbalance (QCM) sensor integrated into a flow injection analysis (FIA) system. The photosensitizer meso-tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) was immobilized on the gold electrode of the QCM chip by combining the sol-gel and self-assembly methods. Such a rapid screen analysis of molecular recognition showed that the p-THPP-immobilized sensor exhibited sensitive and specific interaction only with hemoglobin (Hb). The kinetic rate constants (kass and kdiss) and the equilibrium association constant (KA) for p-THPP-Hb interaction were calculated by linear regression. The sensing performance characteristics of the proposed sensor were investigated. The sensor showed excellent selectivity, reproducibility, and repeatability for the detection of Hb. A linear calibration plot was obtained over a range from 0.2 to 1.0 μM with a detection limit (signal/noise ratio = 3) of 0.15 μM. The response mechanism of the sensor is discussed in detail. Due to its low cost and simple manipulation, this QCM-FIA system was shown to be a highly effective method for the investigation of interaction between biomacromolecules and the PDT photosensitizer. It also provides a potential strategy for screening an efficient and less harmful photosensitizer for PDT application.  相似文献   

20.
《Free radical research》2013,47(9):718-730
Abstract

The response of HeLa cells to subcellular spatially localized two-photon irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. Upon irradiation under these conditions, a localized population of PpIX excited states can be produced with meaningful intracellular spatial resolution; the dimensions of the domain where the incident light flux is high enough for PpIX two-photon absorption are defined by the microscope optics and by the diffraction of light (spot diameter at beam waist of ?0.5–1.0 μm). In turn, the dimensions of the intracellular domain containing cytotoxic PpIX-sensitized singlet oxygen will likewise be confined. Most importantly, cell response (e.g., morphological signs of cell death) correlates with the light dose delivered and the intracellular domain irradiated. Thus, controlling light delivery can complement other techniques used to impart intracellular spatial localization in mechanistic studies of photoinitiated reactive oxygen species. Such controlled light delivery is also expected to be a particularly useful tool to study the so-called bystander effect in which a selectively-perturbed cell can influence a neighboring cell through intercellular signaling mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号