首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A critical component of photosynthetic capacity is the conductance of CO(2) from intercellular airspaces to the sites of CO(2) fixation in the stroma of chloroplasts, termed mesophyll conductance (g(m)). Leaf anatomy has been identified as an important determinant of g(m). There are few studies of the temperature response of g(m) and none has examined the implications of leaf anatomy. Hence, we compared a cultivar of Oryza sativa with two wild Oryza relatives endemic to the hot northern savannah of Australia, namely Oryza meridionalis and Oryza australiensis. All three species had similar leaf anatomical properties, except that the wild relatives had significantly thicker mesophyll cell walls than O. sativa. Thicker mesophyll cell walls in the wild rice species are likely to have contributed to the reduction in g(m) , which was associated with a greater drawdown of CO(2) into chloroplasts (C(i) -C(c) ) compared with O. sativa. Mesophyll conductance increased at higher temperatures, whereas the rate of CO(2) assimilation was relatively stable between 20 and 40 °C. Consequently, C(i) -C(c) decreased for all three species as temperature increased.  相似文献   

2.
Field measurements of photosynthesis of Vitis vinifera cv. Semillon leaves in relation to a hot climate, and responses to photon flux densities (PFDs) and internal CO(2) concentrations (c(i) ) at leaf temperatures from 20 to 40 °C were undertaken. Average rates of photosynthesis measured in situ decreased with increasing temperature and were 60% inhibited at 45 °C compared with 25 °C. This reduction in photosynthesis was attributed to 15-30% stomatal closure. Light response curves at different temperatures revealed light-saturated photosynthesis optimal at 30 °C but also PFDs saturating photosynthesis increased from 550 to 1200 μmol (photons) m(-2)s(-1) as temperatures increased. Photosynthesis under saturating CO(2) concentrations was optimal at 36 °C while maximum rates of ribulose 1,5-bisphosphate (RuBP) carboxylation (V(cmax)) and potential maximum electron transport rates (J(max)) were also optimal at 39 and 36 °C, respectively. Furthermore, the high temperature-induced reduction in photosynthesis at ambient CO(2) was largely eliminated. The chloroplast CO(2) concentration at the transition from RuBP regeneration to RuBP carboxylation-limited assimilation increased steeply with an increase in leaf temperature. Semillon assimilation in situ was limited by RuBP regeneration below 30 °C and above limited by RuBP carboxylation, suggesting high temperatures are detrimental to carbon fixation in this species.  相似文献   

3.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.  相似文献   

4.
High temperature injury to wheat ( Triticum aestivum L.) during grain development is manifested as acceleration of senescence. Experiments were conducted to elucidate the mode of senescence and site of high temperature responses. Wheat (cv. Chris) and rice ( Oryza sativa L. cv. Newbonnet), which have C3 photosynthesis but different temperature responses, were grown with and without inflorescences under three temperature regimes after anthesis. Plant growth and constituents associated with senescence were measured weekly until physiological maturity. Increasing temperatures from 25°C/15°C to 35°C/25°C day/night after anthesis decreased growth, leaf viability, chlorophyll and protein concentrations, and RuBP carboxylase activity and increased protease and RNase activities in wheat. Inflorescence removal increased vegetative weights and slowed most senescence processes more in wheat than in rice, but did not alter the course of high temperature responses. Results are interpreted as indicating that diversion of nutrients from roots by inflorescence sinks at normal temperatures and by increased respiration at high temperatures caused similar responses. Source and sink activities appeared to be regulated jointly, probably by cytokinins from roots, during senescence at normal and elevated temperatures.  相似文献   

5.
Previous studies based on morphological and molecular markers indicated that there are two cultivated and five wild rice species within the Oryza genus with the AA genome. In the cultivated rice species, Oryza sativa, a retroposon named p-SINE1 has been identified. Some of the p-SINE1 members characterized previously showed interspecific insertion polymorphisms in the species with the AA genome. In this study, we identified new p-SINE1 members showing interspecific insertion polymorphisms from representative strains of four wild rice species with the AA genome: O. barthii, O. glumaepatula, O. longistaminata, and O. meridionalis. Some of these members were present only in strains of one species, whereas the others were present in strains of two or more species. The p-SINE1 insertion patterns in the strains of the Asian and African cultivated rice species O. sativa and O. glaberrima were very similar to those of the Asian and African wild rice species O. rufipogon and O. barthii, respectively. This is consistent with the previous hypothesis that O. sativa and O. glaberrima are derived from specific wild rice species. Phylogenetic analysis based on the p-SINE1 insertion patterns showed that the strains of each of the five wild rice species formed a cluster. The strains of O. longistaminata appear to be distantly related to those of O. meridionalis. The strains of these two species appear to be distantly related to those of three other species, O. rufipogon, O. barthii and O. glumaepatula. The latter three species are closely related to one another with O. barthii and O. glumaepatula being most closely related. A phylogenetic tree including a hypothetical ancestor with all loci empty for p-SINE1 insertion showed that the strains of O. longistaminata are related most closely to the hypothetical ancestor. This indicates that O. longistaminata and O. meridionalis diverged early on, whereas the other species diverged relatively recently, and suggests that the Oryza genus with AA genome might have originated in Africa, rather than in Asia.  相似文献   

6.
Determining the effect of elevated CO(2) on the tolerance of photosynthesis to acute heat stress (AHS) is necessary for predicting plant responses to global warming because photosynthesis is heat sensitive and AHS and atmospheric CO(2) will increase in the future. Few studies have examined this effect, and past results were variable, which may be related to methodological variation among studies. In this study, we grew 11 species that included cool and warm season and C(3), C(4), and CAM species at current or elevated (370 or 700 ppm) CO(2) and at species-specific optimal growth temperatures and at 30°C (if optimal ≠ 30°C). We then assessed thermotolerance of net photosynthesis (P(n)), stomatal conductance (g(st)), leaf internal [CO(2)], and photosystem II (PSII) and post-PSII electron transport during AHS. Thermotolerance of P(n) in elevated (vs. ambient) CO(2) increased in C(3), but decreased in C(4) (especially) and CAM (high growth temperature only), species. In contrast, elevated CO(2) decreased electron transport in 10 of 11 species. High CO(2) decreased g(st) in five of nine species, but stomatal limitations to P(n) increased during AHS in only two cool-season C(3) species. Thus, benefits of elevated CO(2) to photosynthesis at normal temperatures may be partly offset by negative effects during AHS, especially for C(4) species, so effects of elevated CO(2) on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

7.
Cen YP  Sage RF 《Plant physiology》2005,139(2):979-990
The temperature response of net CO(2) assimilation rate (A), the rate of whole-chain electron transport, the activity and activation state of Rubisco, and the pool sizes of ribulose-1,5-bisphosphate (RuBP) and 3-phosphoglyceric acid (PGA) were assessed in sweet potato (Ipomoea batatas) grown under greenhouse conditions. Above the thermal optimum of photosynthesis, the activation state of Rubisco declined with increasing temperature. Doubling CO(2) above 370 mubar further reduced the activation state, while reducing CO(2) by one-half increased it. At cool temperature (<16 degrees C), the activation state of Rubisco declined at CO(2) levels where photosynthesis was unaffected by a 90% reduction in O(2) content. Reduction of the partial pressure of CO(2) at cool temperature also enhanced the activation state of Rubisco. The rate of electron transport showed a pronounced temperature response with the same temperature optimum as A at elevated CO(2). RuBP pool size and the RuBP-to-PGA ratio declined with increasing temperature. Increasing CO(2) also reduced the RuBP pool size. These results are consistent with the hypothesis that the reduction in the activation state of Rubisco at high and low temperature is a regulated response to a limitation in one of the processes contributing to the rate of RuBP regeneration. To further evaluate this possibility, we used measured estimates of Rubisco capacity, electron transport capacity, and the inorganic phosphate regeneration capacity to model the response of A to temperature. At elevated CO(2), the activation state of Rubisco declined at high temperatures where electron transport capacity was predicted to be limiting, and at cooler temperatures where the inorganic phosphate regeneration capacity was limiting. At low CO(2), where Rubisco capacity was predicted to limit photosynthesis, full activation of Rubisco was observed at all measurement temperatures.  相似文献   

8.
Nostoc commune is a widespread colonial cyanobacterium living on bare soils that alternate between frost and thaw, drought and inundation and very low and high temperatures. We collected N. commune from alternating wet and dry limestone pavements in Sweden and tested its photosynthesis and respiration at 20°C after exposure to variations in temperature (-269 to 105°C), pH (2-10) and NaCl (0.02-50 g NaCl kg(-1)). We found that dry field samples and rewetted specimens tolerated exposure beyond that experienced in natural environmental conditions: -269 to 70°C, pH 3-10 and 0-20 g NaCl kg(-1), with only a modest reduction of respiration, photosynthesis and active carbon uptake at 20°C. (14)CO(2) uptake from air declined markedly below zero and above 55°C, but remained positive. Specimens maintained a high metabolism with daily exposure to 6 h of rehydration and 18 h of desiccation at -18 and 20°C, but died at 40°C. The field temperature never exceeded the critical 40°C threshold during the wet periods, but it frequently exceeded this temperature during dry periods when N. commune is already dry and unaffected. We conclude that N. commune has an excellent tolerance to low temperatures, long-term desiccation and recurring cycles of desiccation and rewetting. These traits explain why it is the pioneer species in extremely harsh, nutrient-poor and alternating wet and dry environments.  相似文献   

9.
段世华  李绍清  李阳生  熊云  朱英国 《遗传》2007,29(4):455-461
水稻线粒体基因组嵌合基因orf79 和 orfH79分别被认为与BT-型和HL-型水稻CMS有关, 两者具有98%的同源性, 并且其DNA序列只存在4核苷酸的差异。对于这两个嵌合基因, 前者来源于栽培稻(Oryza. sativa L.), 而后者则来源于普通野生稻(O. rufipogon Griff.)。这意味着orf79/ orfH79可能在广泛分布于稻属AA基因组中。为了调查orf79/ orfH79在稻属物种中的分布和变异, 190份栽培稻品系[包括156份亚洲栽培稻(O. sativa var. landrace)和34份非洲栽培稻(O. glaberrima)]以及104份稻属AA基因组野生稻品系(包括O. rufipogon、O.nivara、O. glumaepatula、O. barthii、O. longistaminata和O. meridionalis 6个种), 被用于PCR扩增检测。31份具有控制粤泰A和笹锦A的特异片段的稻属AA基因组水稻品系被检测出。所有特异片段均被回收并测序, 基于DNA 序列的聚类结果显示31份水稻材料被分成了两组, 分别代表为BT-型和HL-型水稻不育细胞质组群。结果也进一步表明: HL-型水稻CMS胞质主要分布于一年生的O. nivara中; BT-型水稻CMS胞质可能来源于栽培稻变种或多年生野生稻O. rufipogon。  相似文献   

10.
In order to clarify the taxonomy and the interrelationships among Asiatic cultivated rice, Oryza sativa , and its related wild species ( O. rufipogon, O. nivara and O . barthii ), 41 morphological characters were examined. Numerical taxonomic methods were used to analyse the data and to illustrate species relationships.
Distinctive differences among the materials studied suggest the retention of O. rufipogoon, O. nivara and O . sativa as three distinct species. The origin of O. sativa from O. nivara through domestication is discussed. An annual wild taxon from Australia, which had been classified as a form of O. nivara , is shown to be distinct from typical O. nivnra and is raised to specific rank. This species has been named O. meridionalis Ng.  相似文献   

11.
The role of NAD(P)H dehydrogenase (NDH)-dependent cyclic electron flow around photosystem I in photosynthetic regulation and plant growth at several temperatures was examined in rice (Oryza sativa) that is defective in CHLORORESPIRATORY REDUCTION 6 (CRR6), which is required for accumulation of sub-complex A of the chloroplast NDH complex (crr6). NdhK was not detected by Western blot analysis in crr6 mutants, resulting in lack of a transient post-illumination increase in chlorophyll fluorescence, and confirming that crr6 mutants lack NDH activity. When plants were grown at 28 or 35°C, all examined photosynthetic parameters, including the CO(2) assimilation rate and the electron transport rate around photosystems I and II, at each growth temperature at light intensities above growth light (i.e. 800 μmol photons m(-2) sec(-1)), were similar between crr6 mutants and control plants. However, when plants were grown at 20°C, all the examined photosynthetic parameters were significantly lower in crr6 mutants than control plants, and this effect on photosynthesis caused a corresponding reduction in plant biomass. The F(v)/F(m) ratio was only slightly lower in crr6 mutants than in control plants after short-term strong light treatment at 20°C. However, after long-term acclimation to the low temperature, impairment of cyclic electron flow suppressed non-photochemical quenching and promoted reduction of the plastoquinone pool in crr6 mutants. Taken together, our experiments show that NDH-dependent cyclic electron flow plays a significant physiological role in rice during photosynthesis and plant growth at low temperature.  相似文献   

12.
The temperature response of C(3) and C(4) photosynthesis   总被引:1,自引:0,他引:1  
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.  相似文献   

13.
The increase of atmospheric CO2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less emphasized. The stimulation of elevated CO2 on canopy photosynthesis may be different from that on single leaf level. In this study, leaf and canopy photosynthesis of rice ( Oryza sativa L. ) were studied throughout the growing season. High CO2 and temperature had a synergetic stimulation on single leaf photosynthetic rate until grain filling. Photosynthesis of leaf was stimulated by high CO2, although the stimulation was decreased by higher temperature at grain filling stage. On the other hand, the simulation of elevated CO2 on canopy photosynthesis leveled off with time. Stimulation at canopy level disappeared by grain filling stage in beth temperature treatments. Green leaf area index was not significantly affected by CO2 at maturity, but greater in plants grown at higher temperature. Leaf nitrogen content decreased with the increase of CO2 concentration although it was not statistically significant at maturity. Canopy respiration rate increased at flowering stage indicating higher carbon loss. Shading effect caused by leaf development reached maximum at flowering stage. The CO2 stimulation on photosynthesis was greater in single leaf than in canopy. Since enhanced CO2 significantly increased biomass of rice stems and panicles, increase in canopy respiration caused diminishment of CO2 stimulation in canopy net photosynthesis, keaf nitrogen in the canopy level decreased with CO2 concentration and may eventually hasten CO2 stimulation on canopy photosynthesis. Early senescence of canopy leaves in high CO2 is also a possible cause.  相似文献   

14.
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO(2)]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO(2)] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO(2)] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34-35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO(2)], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.  相似文献   

15.
Genetic variations of AA genome Oryza species measured by MITE-AFLP   总被引:5,自引:0,他引:5  
MITEs (miniature inverted-repeat transposable elements) are the major transposable elements in Oryza species. We have applied the MITE-AFLP technique to study the genetic variation and species relationship in the AA-genome Oryza species. High polymorphism was detected within and between species. The genetic variation in the cultivated species, Oryza sativa and Oryza glaberrima, was comparatively lower than in their ancestral wild species. In comparison between geographical lineages of the AA genome species, African taxa, O. glaberrima and Oryza barthii, showed lower variation than the Asian taxa, O. sativa, Oryza rufipogon, and Oryza nivara, and Australian taxon Oryza meridionalis. However, another African taxon, Oryza longistaminata, showed high genetic variation. Species relationships were analyzed by the pattern of presence or absence of homologous fragments, because nucleotide sequences of the detected MITE-AFLP fragments revealed that the same fragments in different species shared very high sequence homology. The clustering pattern of the AA-genome species matched well with the geographical origins (Asian, African and Australian), and with the Australian taxon being distant to the others. Therefore, this study demonstrated that the MITE-AFLP technique is amenable for studying the genetic variation and species relationship in rice.  相似文献   

16.
大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响   总被引:13,自引:0,他引:13  
大气CO2浓度升高对植物光合作用的影响研究多集中在单叶水平,在高CO2及高温下对植物单叶及群体光合进行比较的研究少有报道,而群体水平的研究则是预测生态系统反应所不可缺少的。采用田间开顶式培养室研究了大气CO2浓度和温度升高对水稻(OryzasativaL.)叶片及群体光合作用的影响。发现CO2浓度和温度对水稻叶片光合作用有协同促进作用,而对群体光合作用的促进则随时间的推移而减弱;单叶光合受到的促进作用大于群体光合;叶面积指数只在营养生长期受到促进,冠层叶片含氮量受CO2影响降低。群体呼吸(包括茎杆)增加及冠层叶片早衰可能是后期CO2对群体光合促进作用下降的原因。  相似文献   

17.
Aims Vast grasslands on the Tibetan Plateau are almost all under livestock grazing. It is unclear, however, what is the role that the grazing will play in carbon cycle of the grassland under future climate warming. We found in our previous study that experimental warming can shift the optimum temperature of saturated photosynthetic rate into higher temperature in alpine plants. In this study, we proposed and tested the hypothesis that livestock grazing would alter the warming effect on photosynthetic and respiration through changing physical environments of grassland plants.Methods Experimental warming was carried by using an infrared heating system to increase the air temperature by 1.2 and 1.7°C during the day and night, respectively. The warming and ambient temperature treatments were crossed over to the two grazing treatments, grazing and un-grazed treatments, respectively. To assess the effects of grazing and warming, we examined photosynthesis, dark respiration, maximum rates of the photosynthetic electron transport (J max), RuBP carboxylation (V cmax) and temperature sensitivity of respiration Q 10 in Gentiana straminea, an alpine species widely distributed on the Tibetan grassland. Leaf morphological and chemical properties were also examined to understand the physiological responses.Important findings 1) Light-saturated photosynthetic rate (A max) of G. straminea showed similar temperature optimum at around 16°C in plants from all experimental conditions. Experimental warming increased A max at all measuring temperatures from 10 to 25°C, but the positive effect of the warming occurred only in plants grown under the un-grazed conditions. Under the same measuring temperature, A max was significantly higher in plants from the grazed than the un-grazed condition. 2) There was significant crossing effect of warming and grazing on the temperature sensitivity (Q 10) of leaf dark respiration. Under the un-grazed condition, plants from the warming treatment showed lower respiration rate but similar Q 10 in comparison with plants from the ambient temperature treatment. However, under the grazed condition Q 10 was significantly lower in plants from the warming than the ambient treatment. 3) The results indicate that livestock grazing can alter the warming effects on leaf photosynthesis and temperature sensitivity of leaf dark respiration through changing physical environment of the grassland plants. The study suggests for the first time that grazing effects should be taken into account in predicting global warming effects on photosynthesis and respiration of plants in those grasslands with livestock grazing.  相似文献   

18.
BACKGROUND AND AIMS: Influences of rising global CO(2) concentration and temperature on plant growth and ecosystem function have become major concerns, but how photosynthesis changes with CO(2) and temperature in the field is poorly understood. Therefore, studies were made of the effect of elevated CO(2) on temperature dependence of photosynthetic rates in rice (Oryza sativa) grown in a paddy field, in relation to seasons in two years. METHODS: Photosynthetic rates were determined monthly for rice grown under free-air CO(2) enrichment (FACE) compared to the normal atmosphere (570 vs 370 micromol mol(-1)). Temperature dependence of the maximum rate of RuBP (ribulose-1,5-bisphosphate) carboxylation (V(cmax)) and the maximum rate of electron transport (J(max)) were analysed with the Arrhenius equation. The photosynthesis-temperature response was reconstructed to determine the optimal temperature (T(opt)) that maximizes the photosynthetic rate. KEY RESULTS AND CONCLUSIONS: There was both an increase in the absolute value of the light-saturated photosynthetic rate at growth CO(2) (P(growth)) and an increase in T(opt) for P(growth) caused by elevated CO(2) in FACE conditions. Seasonal decrease in P(growth) was associated with a decrease in nitrogen content per unit leaf area (N(area)) and thus in the maximum rate of electron transport (J(max)) and the maximum rate of RuBP carboxylation (V(cmax)). At ambient CO(2), T(opt) increased with increasing growth temperature due mainly to increasing activation energy of V(cmax). At elevated CO(2), T(opt) did not show a clear seasonal trend. Temperature dependence of photosynthesis was changed by seasonal climate and plant nitrogen status, which differed between ambient and elevated CO(2).  相似文献   

19.
Increasing our understanding of the factors regulating seasonal changes in rice canopy carbon gain (C(gain): daily net photosynthesis -- night respiration) under elevated CO(2) concentrations ([CO(2)]) will reduce our uncertainty in predicting future rice yields and assist in the development of adaptation strategies. In this study we measured CO(2) exchange from rice (Oryza sativa) canopies grown at c. 360 and 690 micromol mol(-1)[CO(2)] in growth chambers continuously over three growing seasons. Stimulation of C(gain) by elevated [CO(2)] was 22-79% during vegetative growth, but decreased to between -12 and 5% after the grain-filling stage, resulting in a 7-22% net enhancement for the whole season. The decreased stimulation of C(gain) resulted mainly from decreased canopy net photosynthesis and partially from increased respiration. A decrease in canopy photosynthetic capacity was noted where leaf nitrogen (N) decreased. The effect of elevated [CO(2)] on leaf area was generally small, but most dramatic under ample N conditions; this increased the stimulation of whole-season C(gain). These results suggest that a decrease in C(gain) enhancement following elevated CO(2) levels is difficult to avoid, but that careful management of nitrogen levels can alter the whole-season C(gain) enhancement.  相似文献   

20.
Upon capture in a bee ball (i.e., a dense cluster of Japanese honeybees forms in response to a predatory attack), an Asian giant hornet causes a rapid increase in temperature, carbon dioxide (CO?), and humidity. Within five min after capture, the temperature reaches 46°C, and the CO? concentration reaches 4%. Relative humidity gradually rises to 90% or above in 3 to 4 min. The hornet dies within 10 min of its capture in the bee ball. To investigate the effect of temperature, CO?, and humidity on hornet mortality, we determined the lethal temperature of hornets exposed for 10 min to different humidity and CO?/O? (oxygen) levels. In expiratory air (3.7% CO?), the lethal temperature was ≥ 2° lower than that in normal air. The four hornet species used in this experiment died at 44-46°C under these conditions. Hornet death at low temperatures results from an increase in CO? level in bee balls. Japanese honeybees generate heat by intense respiration, as an overwintering strategy, which produces a high CO? and humidity environment and maintains a tighter bee ball. European honeybees are usually killed in the habitat of hornets. In contrast, Japanese honeybees kill hornets without sacrificing themselves by using heat and respiration by-products and forming tight bee balls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号