首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An atlas and analysis of bovine skeletal muscle long noncoding RNAs   总被引:2,自引:0,他引:2       下载免费PDF全文
Long noncoding RNAs (lncRNAs) have various biological functions and have been extensively studied in recent years. However, the identification and characterization of bovine lncRNAs in skeletal muscle has been very limited compared with that of lncRNAs in other model organisms. In this study, 7188 bovine skeletal muscle lncRNAs were identified by RNA‐Seq and a stringent screening procedure in four different muscle tissues. These lncRNAs shared many characteristics with other mammalian lncRNAs, such as a shorter open reading frame and lower expression level than for mRNAs. Furthermore, the chromosomal locations and global expression patterns for these lncRNAs are also described in detail. More importantly, we detected the important interaction relationships of lncRNAs–miRNAs–mRNAs related to muscle development among 36 lncRNAs, 62 miRNAs and 12 mRNAs. Our results provide a global expression pattern of lncRNAs specific to bovine skeletal muscle and provide important targets for revealing the function of bovine muscle development by thoroughly studying the interaction relationships of lncRNAs–miRNAs–mRNAs.  相似文献   

3.
4.
5.
6.
施剑  李艳明  方向东 《遗传》2017,39(3):189-199
长链非编码RNA(long non-coding RNA, lncRNA)是一类转录本长度超过200nt、不编码蛋白质的RNA。近年来,随着染色质构象捕获及转录组测序等技术的发展,lncRNA与染色质构象间的关系越来越受到重视。多项研究表明,lncRNA在基因调控网络中具有重要的作用,可通过影响细胞核高级结构的动态变化来调控真核基因的表达。因其广泛的基因调控功能及在肿瘤发生过程中的重要作用,lncRNA被认为是未来肿瘤临床诊断和预后判定的新型标志物之一。本文旨在介绍lncRNA改变细胞核高级结构从而调控关键基因表达的分子机制,并详细介绍lncRNA在肿瘤治疗中的临床意义。  相似文献   

7.
8.
9.
Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments.  相似文献   

10.
11.
The study aimed to identify the long noncoding RNAs (lncRNAs) biomarkers for occurrence and prognosis of patients with hepatocellular carcinoma (HCC), and simultaneously to investigate the potential role of lncRNAs in the oncogenesis of HCC. The lncRNAs expression data and the corresponding clinical information of HCC samples were extracted from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes and lncRNAs were identified and the correlation networks were constructed. In this study, we identified 212 differentially expressed lncRNAs and 7,577 differentially expressed genes between liver HCC tumor tissues and normal tissue samples. And then, combining with clinical information, a total of 11 lncRNAs and 162 genes as HCC biomarkers were identified by comprehensive bioinformatics analysis. Further, through coexpress network analysis, we confirmed four lncRNAs (lncRNA_ANKRD10.IT1, lncRNA_CTD.2583A14.8, lncRNA_RP11.404P21.3, and lncRNA_RP11.488L18.10), which can serve as prognostic biomarkers for HCC. The four lncRNAs identified in this study may serve as a potential therapy target for HCC.  相似文献   

12.
13.
14.
15.
16.
《Genomics》2019,111(6):1192-1200
IntroductionIt has been reported that a wide range of long non-coding RNAs (lncRNAs) are implicated in numerous diseases such as tumor, cardiopathy and neurological disorders. Identifying the differentially expressed (DE) profile of lncRNAs in cervical spondylotic myelopathy (CSM) is essential to understand the mechanisms of CSM.MethodsMicroarray assay, quantitative real-time PCR (qRT-PCR) and bioinformatics analysis were employed to reveal the DE profile and potential functions of lncRNAs in CSM.ResultsMicroarray analysis displayed the DE profiles of lncRNAs and mRNAs in rats between the CSM group and the control (CON) group. Thereinto, 1266 DE lncRNAs (738 up-regulation and 528 down-regulation) and 847 mRNAs (487 up-regulation and 360 down-regulation) with >1.1 fold change (FC) were finally identified. Moreover, 17 lncRNAs (13 up-regulation and 4 down-regulation) and 18 mRNAs (13 up-regulation and 5 down-regulation) were found deregulated by >2 FC. Further bioinformatics analysis showed the most remarkable biological processes among up-regulated RNAs contain cellular response to interferon-beta, inflammatory response and innate immune response, which may involve in CSM. Besides, related DE mRNAs of 17 DE lncRNAs in the genome were related to signaling pathway about NOD-like receptor, TNF, and apoptosis. In addition, a co-expression network of lncRNA-mRNA was established for analyzing the biological roles of lncRNAs. Among these, we found a ceRNA network related to CSM. Finally, the expressions of the DE lncRNAs and ceRNA network confirmed by qRT-PCR were in agreement with microarray data.ConclusionsOur study revealed the DE profiles of lncRNAs and mRNAs for CSM. Those dysregulated RNAs may represent potential therapeutic targets of CSM for further study.  相似文献   

17.
Long noncoding RNAs (lncRNAs) are important regulators for a variety of biological processes. Chondrogenic differentiation of mesenchymal stem cells (MSCs) is a crucial stage in chondrogenesis while chondrocyte hypertrophy is related to endochondral ossification and osteoarthritis. However, the effects of lncRNAs on chondrogenic and hypertrophic differentiation of mouse MSCs are unclear. To explore the potential mechanisms of lncRNAs during chondrogenesis and chondrocyte hypertrophy, microarray was performed to investigate the expression profiles of lncRNA and mRNA in MSCs, pre-chondrocytes, and hypertrophic chondrocytes. Then, we validated microarray data by RT-PCR and screened three lncRNAs from upregulating groups during chondrogenesis and chondrocyte hypertrophy respectively. After downregulating any of the above lncRNAs, we found that the expression of chondrogenesis-related genes such as Sox9 and Col2a1 and hypertrophy-related genes including Runx2 and Col10a1 was inhibited, respectively. Furthermore, the target genes of above lncRNAs were predicted by bioinformatics approaches. Gene ontology and Kyoto encyclopedia of genes and genome biological pathway analysis were also made to speculate the functions of above lncRNAs. In conclusion, the study first revealed the expression profile of lncRNAs in chondrogenic and hypertrophic differentiations of mouse MSCs and presented a new prospect for the underlying mechanisms of chondrogenesis and endochondral ossification.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号