首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine thyroid membranes are able to dephosphorylate exogenous [1-3H]DMP as well as endogenous prelabeled [32P]DMP. The kinetics, properties and specificity of the dolichylmonophosphatase activity have been studied by monitoring respectively the release of [1-3H]dolichol from [1-3H]DMP and the residual amount of [32P]DMP. The DMP-phosphatase activity is not linear with respect to time and exhibits a neutral pH optimum. There is only linearity in a narrow range of protein concentration when 0.25% Triton X-100 is included in the incubation mixture. Studying the enzymatic activity in function of protein concentration, the detergent requirement shows to be very critical. Triton X-100 is necessary for enzymatic activity with [1-3H]DMP (only 10% of enzymatic activity in the absence of detergent) although the detergent inhibits the hydrolysis of endogenous prelabeled [32P]DMP. Divalent cations are not essential for enzymatic activity, Ca2+-ions being even inhibitory. In accordance, EDTA (EGTA) is slightly stimulatory. The DMP-Pase activity is not influenced by the ionic strength of the incubation system and sulphydryl groups are not involved. NaF, VOS and VO4(3-) are strongly inhibitory. The inhibition by dolichol and PO3-4 can be explained as the result of product inhibition. An apparent Km-value of 2.5 X 10(-5) M is computed for [1-3H]DMP. Bacitracin inhibits DMP-phosphatase in contrast with other reports. Propylthiouracyl, cAMP, TSH and several other bio-effectors are without effect on the in vitro system. The specificity of the DMP-Pase activity is discussed, showing that the phosphatase is distinctly different from other phosphatases especially phosphatidic acid phosphohydrolase.  相似文献   

2.
Crude microsomal preparations from hen oviduct catalyze the transfer of [32P]phosphate from [gamma-32P]CTP or [gamma-32P]dCTP to endogenous dolichol, forming dolichyl [32P]monophosphate. The oviduct kinase activity assayed with [gamma-32P]CTP is stimulated by divalent cations and exogenous dolichol. The enzymatic formation of dolichyl [32P]monophosphate is inhibited by dCDP and CDP, but not CMP, ADP, GDP, or UDP. The hen oviduct kinase is inhibited 50% by the addition of 38 microM CDP, but 101 microM dCDP is required for 50% inhibition. The amount of dolichol kinase activity in chick oviduct microsomes increases 3.7-fold within 10 days of estrogen administration. The hormone-induced increase in kinase activity is also observed when membranes from untreated and estrogen-treated chicks are assayed in the presence of saturating levels of exogenous dolichol. The microsomal preparations from oviducts of untreated chicks and fully induced birds both exhibit an apparent Km value of 7.1 microM for CTP. An apparent Km of 14 microM has been determined for dCTP. Thus, the developmental change in dolichol kinase activity does not appear to be the result of a difference in the amount of available endogenous dolichol or an alteration in the reactive site for the nucleoside triphosphate substrate, but is probably due to an increased level of the enzyme.  相似文献   

3.
Dolichyl phosphate concentrations, a primary factor in regulating the rate of N-glycosidically linked glycoprotein synthesis, are dependent upon a cytidine triphosphate (CTP)-dependent dolichol kinase. This study examines dolichol kinase in rat testicular microsomes and defines assay conditions. As with dolichol kinases from other tissues, addition of 2-mercaptoethanol increased activity 60%. Inclusion of NaF, an inhibitor of testicular dolichyl phosphate phosphatase activity, also resulted in a 38% increase in activity. Triton X-100 was necessary for phosphorylation of both endogenous and exogenous dolichol; however, concentrations of detergent in excess of 0.25-0.35% were inhibitory. A 2- to 5-fold stimulation of kinase activity was obtained by addition of 50-100 microM exogenous dolichol. The high level of nucleoside triphosphatase activity in testicular microsomes mandated the inclusion of high levels of uridine triphosphate (UTP) to protect the [gamma-32 P] CTP. Increasing UTP concentrations up to 50 mM resulted in increased product formation. A clear requirement for divalent cations was observed; 5 mM ethylenediaminetetraacetate (EDTA) abolished activity. The following order of cation effectiveness was observed: Mn greater than or equal to Ca greater than Cd greater than Zn much greater than Mg. Ten mM optima were established for Ca2+ and Mn2+; the presence of UTP, however, results in significantly reduced concentrations of free Ca2+. Ion combination studies demonstrated interactive inhibitory effects between Ca2+ and other stimulatory divalent cations. Addition of 2 microM brain calmodulin, in the presence of 10 mM Ca2+, resulted in a 75-100% stimulation of activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Dolichol kinase activity is effectively solubilized by extracting calf brain microsomes with 2% 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent. The solubilized kinase catalyzes the enzymatic phosphorylation of dolichols with either CTP or dCTP serving as phosphoryl donor in the presence of Ca2+. Similar Km values were calculated for CTP (7.7 microM) and dCTP (9.1 microM). Dolichol phosphorylation was inhibited by CDP and dCDP, but not CMP, ADP, GDP, or UDP. A kinetic analysis of the inhibitory effect of CDP revealed a pattern characteristic of competitive inhibition. Dolichol kinase activity was markedly stimulated by the addition of R-dolichol (C95) or S-dolichol(C95). The apparent Km value for R-dolichol(C95) and S-dolichol(C95) was 9 microM, but the Vmax for the phosphorylation reaction was 40% higher with S-dolichol(C95). Incubation of the CHAPS extract with [gamma-32P]CTP and exogenous undecaprenol(C55) resulted in the enzymatic synthesis of a radiolabeled product that was mild acid-labile and chromatographically identical to undecaprenyl monophosphate. An enzymatic comparison with a variety of polyprenol substrates indicates that the solubilized kinase prefers long-chain (C90-95) polyprenols with saturated alpha-isoprene units. The effect of exogenous phosphoglycerides on the kinase activity in the dialyzed CHAPS extracts has also been evaluated. These studies describe the properties and polyprenol specificity of stable, solubilized preparations of dolichol kinase that should be useful for further purification of the enzyme.  相似文献   

5.
The phosphorylation of dolichol in larval stages of the brine shrimp, Artemia salina, has been investigated. The dolichol kinase has been assayed in crude microsomes; the enzyme requires CTP as phosphoryl donor and calcium as divalent cation. Activity increases with both incubation time and added microsomal protein. The product of the reaction has been characterized by chromatographic and enzymatic procedures. With gamma-32P CTP as substrate, the apparent Km for CTP is 24 microM. Enzymatic activity is stimulated fivefold by exogenous dolichol. The specific activity of the enzyme increases with the frequency of molting. Dolichol kinase activity was detectable in membranes prepared from dormant Artemia cysts. The low level in dormancy may anticipate the critical role of the enzyme during hatching.  相似文献   

6.
Rat liver microsomes show a capacity to synthesize [1-3H]dolichyl phosphate from [1-3H]-dolichol. Formation of [1-3H]dolichyl phosphate increased continuously over 15 min although the reaction rate was never completely linear. Product formation was directly proportional to microsomal protein concentration between 1.1 mg/mL and the highest concentration tested, 5.5 mg/mL. The reaction rate was linear with respect to the dolichol content of the assay mixture to a saturation point (120 microM). An apparent Km of 50 microM was established for dolichol. The normal phosphate donor for the reaction is CTP and not ATP. The optimum concentration of CTP was 10 mM, and an apparent Km of 4 mM was calculated for this nucleoside triphosphate. The reaction was totally dependent on divalent metal ion, magnesium being more effective than calcium. The optimum concentration of magnesium ion and CTP were the same (10 mM), suggesting that MgCTP2- is utilized as the normal enzyme substrate. Activity measured in the absence of Triton X-100 was only 5% of the activity observed at the optimum (0.5% w/v) detergent concentration. The measurable levels of dolichol phosphokinase could be doubled by the inclusion of 10-15 mM NaF as phosphatase inhibitor. Optimal enzymatic activity was obtained between pH 7.0 and pH 7.5 and could be inhibited by EDTA. The sulfhydryl reagent DTT was slightly stimulatory while the product of the reaction, dolichyl phosphate, was noninhibitory at the highest concentration tested (13.8 microM). The second reaction product (CDP) inhibits the enzymatic phosphorylation of dolichol.  相似文献   

7.
CTP-dependent lipid kinases of yeast   总被引:1,自引:0,他引:1  
Membrane fractions from yeast Saccharomyces cerevisiae catalyzed a transfer of gamma-phosphate from [gamma-32P]CTP into membranous lipids. Phosphorylated compounds were identified as phosphatidic acid and dolichyl phosphate (DolP). The membrane fraction also catalyzed phosphorylation of the exogenous dolichol. The activity of the phosphorylating enzymes could be modified by the yeast growing conditions; i.e., the enzyme from yeast grown aerobically favored the synthesis of phosphatidate over dolichyl phosphate in the ratio of 3:1, whereas the membrane fraction from anaerobically grown yeast synthesized PA and DolP in the ratio of 0.5:1. The activity of the phosphorylating enzymes could also be modified by divalent cations and the concentration of detergents. Phosphorylation of lipids does not occur in the presence of [gamma-32P]ATP and is not influenced by the presence of UTP or GTP. This result points to the specific role of CTP as a gamma-phosphate donor for the synthesis of phosphatidate and dolichyl phosphates in the yeast system.  相似文献   

8.
Inner mitochondrial membranes from liver contain a dolichol kinase which required CTP as a phosphoryl donor. Kinase activity was linear with protein concentration and unlike other reported kinases, activated almost equally well by Mg2+, Mn2+ or Ca2+. Thin-layer chromatography showed that the reaction product co-migrated with authentic dolichyl monophosphate. The phosphorylation of dolichol did not occur in presence of ATP, GTP or UTP but required exogenous dolichol for maximal activity. Newly synthesized [3H]dolichyl monophosphate has been shown to be glycosylated in the presence of GDP[14C]mannose or UDP[14C]glucose. The double labeled lipids formed by the sugar nucleotide-dependent reactions were identified respectively as [14C]mannosylphosphoryl[3H]dolichol and [14C]glucosylphosphoryl [3H]dolichol. These results are discussed in terms of regulation of N-glycosylation processes in inner mitochondrial membranes from liver.  相似文献   

9.
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.  相似文献   

10.
Leishmania donovani promastigotes labelled for 2 h with 32Pi incorporated radioactivity into at least 21 different proteins, as determined by SDS/polyacrylamide-gel electrophoresis. Pulse-chase studies with 32Pi demonstrated that the labelled proteins were in a dynamic state: some radiolabelled proteins rapidly disappeared and others appeared after the chase. The possibility of an ectokinase on the parasite was examined; incubation of intact parasites for 10 min at 25 degrees C in an osmotically buffered medium containing [gamma-32P]ATP, but not [alpha-32P]ATP, resulted in the labelling of 10 different protozoal proteins, presumably localized to the surface of the organism's plasma membrane. Intact promastigotes also catalysed the transfer of 32P from [gamma-32P]ATP to histones. The histone-dependent kinase was solubilized by repeated freezing and thawing, and sonication, and purified 118-fold by chromatographing the high-speed (200,000 g, 1 h) supernatant fraction on QAE-Sephadex, Sephadex G-150 and hydroxyapatite columns. The kinase eluted as a single activity peak from all three columns. The partially purified histone-dependent kinase had the following properties: pH optimum, 7.0; optimum temperature, 37 degrees C; Km for mixed calf thymus histone, 0.15 mM; Km for ATP, 0.8 mM; preferred fractionated histone acceptors, H2b greater than H4 greater than H2a greater than H3 (H1 does not serve as an acceptor); optimum activity required 10-20 mM-Mg2+; inhibited 50-80% by 0.01 mM- and 1 mM-Ca2+; activity was not stimulated by calmodulin, cyclic AMP (1 mM) or cyclic GMP (1 mM) nor inhibited by a cyclic AMP-dependent protein kinase inhibitor (50 micrograms/assay); apparent Mr 75,000, as determined by Sephadex G-150 gel filtration chromatography; phosphorylated exclusively serine residues. Protein kinase activity was low in the early exponential phase of the growth curve and increased 6-fold upon entry into the stationary phase.  相似文献   

11.
The purified membrane fragments of sarcoplasmic reticulum (SR) of rabbit fast skeletal muscles were found to incorporate 32P from[gamma-32P]ATP in endogenous membrane substrates and in histone H1. The existence of membrane-bound protein kinase of SR was demonstrated by steady state binding of [3H]-cAMP to the SR membranes. The constant of [3H]cAMP binding to the membranes is 2.5 +/- 0.003 x 10(6) M-1, the number of binding sites is 6.1 +/- 0.8 pmol per 1 mg of protein. The endogenous phosphorylation of SR components was inhibited by cAMP and cGMP at concentrations of 10(-7)-10(-6) and depended on Mg2+ and Ca2+. The thermostable protein inhibitor of cAMP-dependent protein kinase inhibited the endogenous phosphorylation of SR membranes by 30-40%. The protein phosphoproduct of SR membranes revealed the properties of a phosphoester. The membrane-bound protein kinase was active towards the exogenous substrate--histone H1. Phosphorylation in the presence of histones was independent of cyclic nucleotides, Mg2+ and Ca2+. Fractionation of 32P-labelled solubilized membranes in polyacrylamide gel in the presence of Na-SDS showed that the radioactivity is bound to protein zones with molecular weights of 95 000 and 6000.  相似文献   

12.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

13.
Lipid phosphorylation takes place within the chloroplast envelope. In addition to phosphatidic acid, phosphatidylinositol phosphate, and their corresponding lyso-derivatives, we found that two novel lipids underwent phosphorylation in envelopes, particularly in the presence of carrier-free [gamma-(32)P]ATP. These two lipids incorporated radioactive phosphate in chloroplasts in the presence of [gamma-(32)P]ATP or [(32)P]P(i) and light. Interestingly, these two lipids were preferentially phosphorylated in envelope membranes in the presence [gamma-(32)P]CTP, as the phosphoryl donor, or [gamma-(32)P]ATP, when supplemented with CDP and nucleoside diphosphate kinase II. The lipid kinase activity involved in this reaction was specifically inhibited in the presence of cytosine 5'-O-(thiotriphosphate) (CTPgammaS) and sensitive to CTP chase, thereby showing that both lipids are phosphorylated by an envelope CTP-dependent lipid kinase. The lipids were identified as phosphorylated galactolipids by using an acid hydrolysis procedure that generated galactose 6-phosphate. CTPgammaS did not affect the import of the small ribulose-bisphosphate carboxylase/oxygenase subunit into chloroplasts, the possible physiological role of this novel CTP-dependent galactolipid kinase activity in the chloroplast envelope is discussed.  相似文献   

14.
A radiometric method has been devised for the determination of small quantities of NADH formed in preceding dehydrogenase reactions. In a coupled enzymatic reaction, phosphoglycerate kinase (PGK) catalyzes the transfer of [32P]orthophosphate from [gamma-32P]ATP to 3-phosphoglycerate; the intermediate, 1,3-[1-32P]diphosphoglycerate, is dephosphorylated by glyceraldehyde-3-phosphate dehydrogenase (GAP-DH). [32P]Orthophosphate is released proportionally to NADH and can be measured after adsorption of [gamma-32P]ATP to activated charcoal. With this method, 0.2 pmol of NADH are detectable in the presence of a 10(4)-fold excess of NAD over NADH.  相似文献   

15.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

16.
The exogenous addition of the catalytic subunit of cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), or calmodulin (CaM) induced rapid phosphorylation of the ryanodine receptor (Ca2+ release channel) in canine cardiac microsomes treated with 1 mM [gamma-32P]ATP. Added protein kinase C (PKC) also phosphorylated the cardiac ryanodine receptor but at a relatively slow rate. The observed level of PKA-, PKG-, or PKC-dependent phosphorylation of the ryanodine receptor was comparable to the maximum level of [3H]ryanodine binding in cardiac microsomes, whereas the level of CaM-dependent phosphorylation was about 4 times greater. Phosphorylation by PKA, PKG, and PKC increased [3H]ryanodine binding in cardiac microsomes by 22 +/- 5, 17 +/- 4, and 15 +/- 9% (average +/- SD, n = 4-5), respectively. In contrast, incubation of microsomes with 5 microM CaM alone and 5 microM CaM plus 1 mM ATP decreased [3H]ryanodine binding by 38 +/- 14 and 53 +/- 15% (average +/- SD, n = 6), respectively. Phosphopeptide mapping and phosphoamino acid analysis provided evidence suggesting that PKA, PKG, and PKC predominantly phosphorylate serine residue(s) in the same phosphopeptide (peptide 1), whereas the endogenous CaM-kinase phosphorylates serine residue(s) in a different phosphopeptide (peptide 4). Photoaffinity labeling of microsomes with photoreactive 125I-labeled CaM revealed that CaM bound to a high molecular weight protein, which was immunoprecipitated by a monoclonal antibody against the cardiac ryanodine receptor. These results suggest that protein kinase-dependent phosphorylation and CaM play important regulatory roles in the function of the cardiac sarcoplasmic reticulum Ca2+ release channel.  相似文献   

17.
When calf brain membrane preparations containing endogenous dolichyl [32P]monophosphate (Dol-32P), prelabeled enzymatically by [gamma-32P]-CTP, are incubated with unlabeled UDP-glucose, the formation of a mild acid-labile [32P]phosphoglucolipid is observed. The biosynthesis of the [32P]phosphoglucolipid is dependent on the concentration of UDP-glucose added, and no [32P]phosphoglycolipid appeared when UDP-glucose was replaced by ADP-glucose, UDP-xylose, UDP-galactose, UDP-mannose, or UDP-glucuronic acid. The 32P-labeled product formed by the UDP-glucose-dependent reaction is chemically and chromatographically identical to glucosylphosphoryldolichol. Several enzymatic parameters of the glucosylation of the specific pool of Dol-P, synthesized by the CTP-mediated kinase, and the total available pool of Dol-P have been compared by a double-label assay utilizing endogenous, prelabeled Dol-32P and UDP-[3H]glucose as substrates.  相似文献   

18.
Extracellular phosphorylation in the parasite, Leishmania major   总被引:2,自引:0,他引:2  
Intact promastigotes or cell-free extracts of the parasite Leishmania major were labelled with adenosine 5'[gamma-32P]-triphosphate (ATP). This resulted in the identification of eleven phosphoproteins. [gamma-32P]ATP incorporation into endogenous and exogenous substrates was insensitive to most of the commonly used protein kinase inhibitors and activators indicating that the leishmanial enzyme(s) may represent a new class of kinase(s). In addition, exogenous substrate specificity was inconsistent with the preferences of second messenger-dependent protein kinases. Cyclic AMP had differential effects on phosphorylation in intact cells and lysates. The majority of kinase activity could be attributed to an externally oriented membrane-associated protein kinase(s), as no specific cytosolic phosphoproteins were found and intact cells phosphorylated exogenous substrates. Labelled ATP did not cross the membrane and [alpha-32P]ATP was an unsuitable substrate for the phosphorylation activity. The ectokinase activity on live Leishmania exhibited a different substrate preference when compared to the protein kinase activity in the particulate fraction, suggesting that more than one protein kinase may be present in L. major. Three serine-labelled phosphoproteins were specifically released into the medium. The presence of an ecto-kinase and these released phosphoproteins may play a significant role in host-parasite interactions.  相似文献   

19.
A membrane-bound undecaprenol kinase from Lactobacillus has been identified by observing the ATP-dependent phosphorylation of [14C]undercaprenol. The product of this reaction was shown to be [14C]undecaprenyl monophosphate by comparison of its chromatographic mobilities with authentic undecaprenyl monophosphate. It was shown that 32P from [gamma-32P]ATP was incorporated into undecaprenyl monophosphate. The kinase was partially solubilized by a variety of methods utilizing Triton X-100. Both the membrane-associated and solubilized enzymes required Mg2+, Triton X-100 and dimethylsulfoxide for activity. The enzyme preferentially phosphorylated the C34, C50 AND C 55 polyprenols. Geranylgeraniol (C20) and dolichol (C100), however, were utilized only 6% and 13% as well as undecaprenol, respectively. Despite the 8-fold difference in apparent V values, the apparent Km values for dolichol and undecaprenol were both 14 microM. The apparent Km for the nucleotide cosubstrate, ATP, was 2 mM. No other nucleoside triphosphate could substitute for ATP.  相似文献   

20.
Regulation of polyphosphoinositide synthesis in cardiac membranes   总被引:1,自引:0,他引:1  
The relative distribution of phosphatidylinositol (PI) and phosphatidylinositol-4-phosphate (PIP) kinase activities in enriched cardiac sarcolemma (SL), sarcoplasmic reticulum (SR), and mitochondrial fractions was investigated. PI and PIP kinase activities were assayed by measuring 32P incorporation into PIP and phosphatidylinositol 4,5-bisphosphate (PIP2) from endogenous and exogenous PI in the presence of [gamma-32P]ATP. PI and PIP kinase activities were present in SL, SR, and mitochondrial fractions prepared from atria and ventricles although the highest activities were found in SL. A similar membrane distribution was found for PI kinase activity measured in the presence of detergent and exogenous PI. PI and PIP kinase activities were detectable in the cytosol providing exogenous PI and PIP and Triton X-100 were present. Further studies focused on characterizing the properties and regulation of PI and PIP kinase activities in ventricular SL. Alamethacin, a membrane permeabilizing antibiotic, increased 32P incorporation into PIP and PIP2 4-fold. PI and PIP kinase activities were Mg2+ dependent and plateaued within 15-20 min at 25 degrees C. Exogenous PIP and PIP2 (0.1 mM) had no effect on PIP and PIP2 labeling in SL in the absence of Triton X-100 but inhibited PI kinase activity in the presence of exogenous PI and Triton X-100. Apparent Km's of ATP for PI and PIP kinase were 133 and 57 microM, respectively. Neomycin increased PIP kinase activity 2- to 3-fold with minor effects on PI kinase activity. Calmidazolium and trifluoperazine activated PI kinase activity 5- to 20-fold and completely inhibited PIP kinase activity. Quercetin inhibited PIP kinase 66% without affecting PI kinase activity. NaF and guanosine 5'-O-(3-thiotriphosphate) had no effect on PI and PIP kinase activities, indicating that these enzymes were not modulated by G proteins. The probability that PIP and PIP2 synthesis in cardiac sarcolemma is regulated by product inhibition and phospholipase C was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号