首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We tested the hypothesis that CO2 supersaturation along the aquatic conduit over Sweden can be explained by processes other than aquatic respiration. A first generalized‐additive model (GAM) analysis evaluating the relationships between single water chemistry variables and pCO2 in lakes and streams revealed that water chemistry variables typical for groundwater input, e.g., dissolved silicate (DSi) and Mg2+ had explanatory power similar to total organic carbon (TOC). Further GAM analyses on various lake size classes and stream orders corroborated the slightly higher explanatory power for DSi in lakes and Mg2+ for streams compared with TOC. Both DSi and TOC explained 22–46% of the pCO2 variability in various lake classes (0.01–>100 km2) and Mg2+ and TOC explained 11–41% of the pCO2 variability in the various stream orders. This suggests that aquatic pCO2 has a strong groundwater signature. Terrestrial respiration is a significant source of the observed supersaturation and we may assume that both terrestrial respiration and aquatic respiration contributed equally to pCO2 efflux. pCO2 and TOC concentrations decreased with lake size suggesting that the longer water residence time allow greater equilibration of CO2 with the atmosphere and in‐lake mineralization of TOC. For streams, we observed a decreasing trend in pCO2 with stream orders between 3 and 6. We calculated the total CO2 efflux from all Swedish lakes and streams to be 2.58 Tg C yr?1. Our analyses also demonstrated that 0.70 Tg C yr?1 are exported to the ocean by Swedish watersheds as HCO3? and CO32? of which about 0.56 Tg C yr?1 is also a residual from terrestrial respiration and constitute a long‐term sink for atmospheric CO2. Taking all dissolved inorganic carbon (DIC) fluxes along the aquatic conduit into account will lower the estimated net ecosystem C exchange (NEE) by 2.02 Tg C yr?1, which corresponds to 10% of the NEE in Sweden.  相似文献   

2.
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land–water–atmosphere interfaces is sometimes mentioned, low‐order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2) from running waters within a 67 km2 boreal catchment was studied. During a 4 year period (2006–2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high‐resolution (5 × 5 m) grid‐based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m?2 yr?1) of the entire stream C flux (9.6 (±2.4) g C m?2 yr?1) (lateral as DIC, DOC, and vertical as CO2). In addition, 72% of the total CO2 loss took place already in the first‐ and second‐order streams. This study demonstrates the importance of including CO2 evasion from low‐order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.  相似文献   

3.
Lakes (including reservoirs) are an important component of the global carbon (C) cycle, as acknowledged by the fifth assessment report of the IPCC. In the context of lakes, the boreal region is disproportionately important contributing to 27% of the worldwide lake area, despite representing just 14% of global land surface area. In this study, we used a statistical approach to derive a prediction equation for the partial pressure of CO2 (pCO2) in lakes as a function of lake area, terrestrial net primary productivity (NPP), and precipitation (r2 = .56), and to create the first high‐resolution, circumboreal map (0.5°) of lake pCO2. The map of pCO2 was combined with lake area from the recently published GLOWABO database and three different estimates of the gas transfer velocity k to produce a resulting map of CO2 evasion (FCO2). For the boreal region, we estimate an average, lake area weighted, pCO2 of 966 (678–1,325) μatm and a total FCO2 of 189 (74–347) Tg C year?1, and evaluate the corresponding uncertainties based on Monte Carlo simulation. Our estimate of FCO2 is approximately twofold greater than previous estimates, as a result of methodological and data source differences. We use our results along with published estimates of the other C fluxes through inland waters to derive a C budget for the boreal region, and find that FCO2 from lakes is the most significant flux of the land‐ocean aquatic continuum, and of a similar magnitude as emissions from forest fires. Using the model and applying it to spatially resolved projections of terrestrial NPP and precipitation while keeping everything else constant, we predict a 107% increase in boreal lake FCO2 under emission scenario RCP8.5 by 2100. Our projections are largely driven by increases in terrestrial NPP over the same period, showing the very close connection between the terrestrial and aquatic C cycle.  相似文献   

4.
Northern lakes are ice-covered for considerable portions of the year, where carbon dioxide (CO2) can accumulate below ice, subsequently leading to high CO2 emissions at ice-melt. Current knowledge on the regional control and variability of below ice partial pressure of carbon dioxide (pCO2) is lacking, creating a gap in our understanding of how ice cover dynamics affect the CO2 accumulation below ice and therefore CO2 emissions from inland waters during the ice-melt period. To narrow this gap, we identified the drivers of below ice pCO2 variation across 506 Swedish and Finnish lakes using water chemistry, lake morphometry, catchment characteristics, lake position, and climate variables. We found that lake depth and trophic status were the most important variables explaining variations in below ice pCO2 across the 506 lakes. Together, lake morphometry and water chemistry explained 53% of the site-to-site variation in below ice pCO2. Regional climate (including ice cover duration) and latitude only explained 7% of the variation in below ice pCO2. Thus, our results suggest that on a regional scale a shortening of the ice cover period on lakes may not directly affect the accumulation of CO2 below ice but rather indirectly through increased mobility of nutrients and carbon loading to lakes. Thus, given that climate-induced changes are most evident in northern ecosystems, adequately predicting the consequences of a changing climate on future CO2 emission estimates from northern lakes involves monitoring changes not only to ice cover but also to changes in the trophic status of lakes.  相似文献   

5.
Organic and inorganic carbon concentrations in lakes and the links to catchment and water quality were studied in variable landscapes using the Finnish Lake Survey data base including 874 randomly selected lakes sampled during autumn overturn. The median total organic carbon (TOC) in these boreal lakes was 7.8 mg l?1, the median total inorganic carbon (TIC) 1.6 mg l?1 and the median partial pressure of CO2 (pCO2) 900 μatm. When the data was divided into subgroups according to land use in the catchment, the proportion of TIC of the total carbon (TC) in lakes was highest (31%) in agricultural areas and lowest (10%) in peatland areas. Elevated TIC concentrations were associated with agricultural land in the catchment, whereas elevated TOC concentrations were observed in lakes with high peatland proportion in the catchment. Two contrasting important sources of CO2 in lakes were identified on the basis of statistical analysis of the data; weathering processes in the catchments and decomposition of organic matter. CO2 was also strongly associated with total nutrients TN and TP, implying the importance of quality of organic matter and availability of nutrients for the decomposition processes.  相似文献   

6.
Natural fires annually decimate up to 1% of the forested area in the boreal region of Québec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire‐induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Québec. Plankton respiration varied widely among lakes (from 21 to 211 μg C L?1 day?1), was negatively related to lake area, and positively related to dissolved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day?1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire‐induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire‐induced enhancement of lake organic C mineralization and C emissions represents a long‐term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire‐induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape.  相似文献   

7.
SUMMARY 1. The Weichsel glaciation has divided Denmark into two regions with different susceptibility to acidification. East of the Weichselian terminal moraine, soils are usually clayey and calcareous, and the streams are alkaline (mean alkalinity 2.24 mmol 1--1) and resistant to inputs of acidifying substances. 2. Trend analysis of pH and alkalinity of water samples taken over 15 years in two streams with alkalinities above 1.5 mmol 1?1 in eastern Jutland, showed no trends of acidification. 3. West of the terminal moraine the soils are sandy and leached and alkalinity is lower (mean 0.59 mmol 1?1). Although such streams with medium alkalinity are believed not to be vulnerable to acidification, we have documented significant decreases in their pH and alkalinity over 12 years. 4. Trends of pH and alkalinity in four western streams with mean alkalinities between 0.05 and 0.79 mmol 1?1 showed annual decreases of 0.027 pH units and 4.7 nmol 1?1 in alkalinity. 5. Overall, Danish streams contain about 7.9 times more calculated free CO2 (pCO2=10?2.6 atm) than water in equilibrium with air (pCO2= 10?3.5 atm). The calculated free CO2 content has increased significantly in western Danish streams over the study period (6.9 μmol 1?1 yr-1). This increase cannot be explained by the prevailing global increase in atmospheric pCO2 which only can account for 0.54 pmol 1?1 yr?1 at maximum. 6. Reasons for the ongoing stream acidification in the western part of Denmark are discussed. We suggest that atmospheric deposition causes stream acidification in a heath-covered catchment without agriculture. In heavily cultivated regions the main acidification factor is argued to be proton production in the soil through nitrification of ammonium-containing fertilizers.  相似文献   

8.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

9.
We show that sediment respiration is one of the key factors contributing to the high CO2 supersaturation in and evasion from Finnish lakes, and evidently also over large areas in the boreal landscape, where the majority of the lakes are small and shallow. A subpopulation of 177 randomly selected lakes (<100 km2) and 32 lakes with the highest total phosphorus (Ptot) concentrations in the Nordic Lake Survey (NLS) data base were sampled during four seasons and at four depths. Patterns of CO2 concentrations plotted against depth and time demonstrate strong CO2 accumulation in hypolimnetic waters during the stratification periods. The relationship between O2 departure from the saturation and CO2 departure from the saturation was strong in the entire data set (r2=0.79, n=2 740, P<0.0001). CO2 concentrations were positively associated with lake trophic state and the proportion of agricultural land in the catchment. In contrast, CO2 concentrations negatively correlated with the peatland percentage indicating that either input of easily degraded organic matter and/or nutrient load from agricultural land enhance degradation. The average lake‐area‐weighted annual CO2 evasion based on our 177 randomly selected lakes and all Finnish lakes >100 km2 ( Rantakari & Kortelainen, 2005 ) was 42 g C m?2 LA (lake area), approximately 20% of the average annual C accumulation in Finnish forest soils and tree biomass (covering 51% of the total area of Finland) in the 1990s. Extrapolating our estimate from Finland to all lakes of the boreal region suggests a total annual CO2 evasion of about 50 TgC, a value upto 40% of current estimates for lakes of the entire globe, emphasizing the role of small boreal lakes as conduits for transferring terrestrially fixed C into the atmosphere.  相似文献   

10.
Here we report the long-term (13-year) dynamics of surface pCO2 and its response to episodic eutrophication and acidification events in two contrasting tropical coastal lakes, one clear-water and the other humic. A short-term nutrient addition experiment was also conducted in mesocosms in the humic lake where in situ eutrophication was moderate. Our objective was to elucidate the response of pCO2 to interannual changes in key limnological conditions, such as nutrient concentrations and pH. The humic waters showed a median pCO2 almost ninefold higher across the 13-year study than the clear waters, supporting pCO2 values about tenfold above atmospheric equilibrium. Eutrophication of the clear-water lake resulted in a decrease in pCO2 to median values below atmospheric equilibrium, producing a strong sink for atmospheric CO2. In contrast, pCO2 increased by over tenfold in both lakes during the acidification phase, resulting in very large CO2 emissions to the atmosphere. Experimental nutrient additions in the humic lake showed a strong persistence of high pCO2. The extreme variability in pCO2 observed here might be a characteristic of tropical lakes and may have important consequences for regional carbon budgets.  相似文献   

11.
Here, we explore the interaction between hydrology and the reactivity of allochthonous dissolved organic carbon (DOCalloch) in determining the potential of DOCalloch to generate CO2 through biological and photo-chemical mineralization in boreal lakes. We developed a mechanistic model that integrates the reactivity continuum (RC) concept to reconstruct in-lake mineralization of DOCalloch under variable hydrologic conditions using empirical measurements of DOCalloch concentrations and reactivity as model inputs. The model predicts lake DOCalloch concentration (L-DOCalloch) and its average overall reactivity \( \left( {\bar{K}_{\text{alloch}} } \right) \), which integrates the distribution of DOCalloch ages within the lake as a function of the DOC loading (DOCin), the initial reactivity of this DOCin (k 0), and the lake water residence time (WRT). The modeled DOCalloch mineralization rates and concentrations were in agreement with expectations based on observed and published values of ambient lake DOC concentrations and reactivity. Results from this modeling exercise reveal that the interaction between WRT and k 0 is a key determinant of the ambient concentration and reactivity of lake DOCalloch, which represents the bulk of DOC in most of these lakes. The steady-state \( \left( {\bar{K}_{\text{alloch}} } \right) \) also represents the proportion of CO2 that can be extracted from DOCalloch during its transit through lakes, and partly explains the patterns in surface water pCO2 oversaturation that have been observed across gradients of lake size and volume. We estimate that in-lake DOCalloch mineralization could potentially contribute on average 30–40% of the observed surface carbon dioxide partial pressure (pCO2) across northern lakes. Applying the RC framework to in-lake DOCalloch dynamics improves our understanding of DOCalloch transformation and fate along the aquatic network, and results in a predictable mosaic of DOC reactivity and potential CO2 emissions across lakes within a landscape.  相似文献   

12.
In lentic systems, hydrology can be dramatically altered after storm events, potentially modifying the carbon budget. In particular, rapid increases in the surface water carbon dioxide partial pressure (pCO2) have been observed following such events. Several processes may explain these shifts in lake CO2 dynamics, including vertical mixing, increases in metabolism, and increases in external loading. To evaluate the relative importance of these various processes, we reconstructed the whole-lake daily CO2 budget using concurrent estimates of lake metabolism and daily CO2 mass balance budgets in two lakes with distinct morphometries located in Québec, Canada. We found that storm events caused variable, but significant, changes in whole-lake CO2 mass. Such events influenced CO2 dynamics indirectly by inducing shifts in lake metabolism, and directly by importing CO2 by the inflowing storm waters. Storm intensity (in terms of total amount of precipitation) influences the balance between these two processes, but the final outcome depends on lake morphometry. Our results suggest that when storms are intense enough to drive lake water renewal rate beyond 1% day?1, external CO2 loadings became the dominant process, overwhelming internal CO2 production. Lakes with slower hydrological turnover, however, are more susceptible to internal regulation and may simply re-allocate CO2 from the hypolimnion to the epilimnion following a storm event. Our results thus suggest that this tightening of the watershed-lake-atmosphere linkage by climatic events is strongly modulated by lake morphometry. These features should be considered when predicting the impact of future climate change on regional C budgets and emissions.  相似文献   

13.
The aim of this study is to infer past changes in total organic carbon (TOC) content of lake water during the Holocene in eight boreal forest, tree-limit and alpine lakes using a new technique – near-infrared spectroscopy (NIRS). A training set of 100 lakes from northern Sweden covering a TOC gradient from 0.7 to 14.9 mg l−1 was used to establish a relationship between the NIRS signal from surface sediments (0–1 cm) and the TOC content of the water mass. The NIRS model for TOC has a root mean squared error (RMSECV) of calibration of 1.6 mg l−1 (11% of the gradient) assessed by internal cross-validation (CV), which yields an R2cv of 0.61. The results show that the most dramatic change among the studied lakes occurs in both tree-line lakes around 1000 yrs BP when the TOC content decreases from ca. 7 to 3 mg l−1 at the present, which is probably due to a descending tree-limit. The TOC content in the alpine lakes shows a declining trend throughout most of the Holocene indicating that TOC may be more directly correlated to climate in alpine lakes than forest lakes. All boreal forest lakes show a declining trend in TOC during the past 3000 yrs with the largest amplitude of change occurring in the lake with a connected mire. The results indicate that a change to a warmer and more humid climate can increase the TOC levels in lakes, which in turn may increase the saturation of CO2 in lake waters and the emission of CO2 to the atmosphere.  相似文献   

14.
It is now widely accepted that boreal rivers and streams are regionally significant sources of carbon dioxide (CO2), yet their role as methane (CH4) emitters, as well as the sensitivity of these greenhouse gas (GHG) emissions to climate change, are still largely undefined. In this study, we explore the large‐scale patterns of fluvial CO2 and CH4 partial pressure (pCO2, pCH4) and gas exchange (k) relative to a set of key, climate‐sensitive river variables across 46 streams and rivers in two distinct boreal landscapes of Northern Québec. We use the resulting models to determine the direction and magnitude of C‐gas emissions from these boreal fluvial networks under scenarios of climate change. River pCO2 and pCH4 were positively correlated, although the latter was two orders of magnitude more variable. We provide evidence that in‐stream metabolism strongly influences the dynamics of surface water pCO2 and pCH4, but whereas pCO2 is not influenced by temperature in the surveyed streams and rivers, pCH4 appears to be strongly temperature‐dependent. The major predictors of ambient gas concentrations and exchange were water temperature, velocity, and DOC, and the resulting models indicate that total GHG emissions (C‐CO2 equivalent) from the entire network may increase between by 13 to 68% under plausible scenarios of climate change over the next 50 years. These predicted increases in fluvial GHG emissions are mostly driven by a steep increase in the contribution of CH4 (from 36 to over 50% of total CO2‐equivalents). The current role of boreal fluvial networks as major landscape sources of C is thus likely to expand, mainly driven by large increases in fluvial CH4 emissions.  相似文献   

15.
We studied the interannual variation of surface water partial pressure of CO2 (pCO2) and the CO2 emissions from the 37 large Finnish lakes linking them to the water quality, catchment and climate attributes in 1996–2001. The lake water CO2 was measured three times a year in the study lakes in 1998 and 1999 and for the rest of the years the CO2 was modeled by measured alkalinity. The median annual CO2 emission to the atmosphere ranged between 1.49 and 2.29 mol m?2 a?1. The annual CO2 emission followed closely the annual precipitation pattern with the highest emission during the years when the precipitation was highest (r2=0.81–0.97, P<0.05). There was a strong negative correlation (r2=0.50–0.82, P<0.001) between O2 and CO2 saturation in the lake water during stratification suggesting effective decomposition of organic matter in the lakes. Furthermore, total phosphorus and the proportion of agricultural land in the catchment had significant positive correlations with CO2 saturation.  相似文献   

16.
Tropical floodplain lake ecosystems are recognized as important sources of carbon (C) from the water to the atmosphere. They receive large amounts of organic matter and nutrients from the watershed, leading to intense net heterotrophy and carbon dioxide (CO2) emission from open waters. However, the role of extensive stands of floating macrophytes colonizing floodplains areas is still neglected in assessments of net ecosystem exchange of CO2 (NEE). We assessed rates of air-lake CO2 flux using static chambers in both open waters and waters covered by the widespread floating aquatic macrophyte (water hyacinth; Eichornia sp.) in two tropical floodplain lakes in Pantanal, Brazil during different hydrological seasons. In both lakes, areas colonized by floating macrophytes were a net CO2 sink during all seasons. In contrast, open waters emitted CO2, with higher emissions during the rising and high water periods. Our results indicate that the lake NEE can be substantially overestimated (fivefold or more in the studied lakes) if the carbon fixation by macrophytes is not considered. The contribution of these plants can lead to neutral or negative NEE (that is, net uptake of CO2) on a yearly basis. This highlights the importance of floating aquatic macrophytes for the C balance in shallow lakes and extensive floodplain areas.  相似文献   

17.
We measured CO2 concentration and determined evasion rate and piston velocity across the water–air interface in flow-through chambers at eight stations along two 20 km long streams in agricultural landscapes in Zealand, Denmark. Both streams were 9–18-fold supersaturated in CO2 with daily means of 240 and 340 μM in January–March and 130 and 180 μM in June–August. Annual CO2 medians were 212 μM in six other streams and 460 μM in four groundwater wells, while seven lakes were weakly supersaturated (29 μM). Air concentrations immediately above stream surfaces were close to mean atmospheric conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h?1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m?2 day?1) where CO2-rich soil water entered fast stream flow, while rates were tenfold lower (25–100 mmol m?2 day?1) in slow-flowing lower reaches. CO2 evasion mainly derived from the input of CO2 in soil water. The variability of CO2 evasion along the two lowland streams covered much of the range in sub-Arctic and temperate streams reported previously. In budgets for the two stream catchments, loss of carbon from soils via the hydrological cycle was substantial (3.2–5.7 mmol m?2 day?1) and dominated by CO2 consumed to form HCO3 ? by mineral dissolution (69–76%) and export of organic carbon (15–23%) relative to dissolved CO2 export (7–9%).  相似文献   

18.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   

19.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

20.
Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large‐scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m?2 d?1), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4 + CO2), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2‐equivalents. The incorporation of ebullition and plant‐mediated CH4 fluxes would further increase the importance of lake CH4. The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号