首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The elemental and water content of cultured bovine adrenal chromaffin cells and their secretory chromaffin granules have been measured and compared with isolated chromaffin granules using quick freezing, ultracryomicrotomy, and electron microprobe analysis methods. In units of millimole/kilogram dry weight (+/- S.E.) granules in situ contained: P, 523 +/- 32; K+, 124 +/- 9; S, 82 +/- 3; Cl-, 74 +/- 9; Ca2+, 13 +/- 2; Mg2+, 6 +/- 2; and Na+, -2 +/- 2. Following routine isolation in isotonic sucrose buffer, granule K and Cl- had decreased while granule Na+ increased. Cl- exhibited a consistent decrease to 35-40 mmol/kg dry weight. Granule Na+ and K+ concentrations ranged from 43 to 12 mmol/kg and 28 to 60 mmol/kg dry weight, respectively, depending on the Na+ and K+ content of the buffer. Despite the redistribution of monovalent ions, granule Ca2+, granule P, being in the form of ATP, and granule S, being in the form of protein, were not significantly changed. The stability of these elements is consistent with the existence of a stable storage complex for Ca2+, ATP, and protein. Using the granule as an internal standard with a water content of 66%, the water contents of external space, nucleus, cytoplasm, and mitochondria were estimated to be 89, 88, 82, and 70%, respectively. Wet weight concentrations for each element were calculated for granules and cytoplasm from which the transgranular concentration gradients for K+, Cl-, and Na+ were determined. Cl-, a permeant anion, was 2-fold higher in the granule than in the cytoplasm while K+, a slightly permeant cation, had an opposite distribution ratio slightly less than two. Together, the K+ and Cl- data suggest the presence of an inside-positive granule membrane potential of approximately 10-16 mV. The surprising lack of Na+ from the granule matrix suggests a hugh inward gradient for Na+ even though the Na+ content of chromaffin cell cytoplasm is low at 5 mmol/kg water. The lack of an outward Na+ gradient is important in that it indicates that the previously described electroneutral Na+-Ca2+ exchange system, by which isolated granules accumulate Ca2+, does not operate in mature granules in situ. Consequently, if chromaffin granules regulate internal calcium during stimulus secretion coupling, a mechanism other that Na+-Ca2+ exchange is necessary.  相似文献   

2.
Transmembrane potential and ionic content of rat alveolar macrophages   总被引:4,自引:0,他引:4  
The cell volume, cell water, intracellular ionic concentrations, and transmembrane potential of rat alveolar macrophages were determined. The measurements were made on cells which had been separated from the medium by centrifugation through dibutyl phthalate in order to greatly reduce the trapped extracellular space. The mean cell volume of the alveolar macrophages is 1,525 cubic microns and 72% of this volume is water. The intracellular fluid is high in Na+ (97 mM) and lower in K+ (50 mM) and the intracellular Cl- concentration in 64 mM. The transmembrane potential, as measured from the equilibrium distribution of tritiated triphenylmethyl phosphonium and by using the fluorescent probe, Di-S-C3(5), is approximately -37 millivolts. Neither Na+, K+, nor Cl- is distributed at equilibrium. However, the K+ permeability of alveolar macrophage membranes appears to be greater than Na+ permeability.  相似文献   

3.
Halobacteroides acetoethylicus grew in media with 6 to 20% NaCl and displayed optimal growth at 10% NaCl. When grown in medium with an [NaCl] of 1.7 M, the internal cytoplasmic [Na+] and [Cl-] were 0.92 and 1.2 M, respectively, while K+ and Mg2+ concentrations in cells were 0.24 and 0.02 M, respectively. Intracellular [Na+] was fourfold higher than intracellular [K+]. Since Na+ and Cl- ions were not excluded from the cell, the influence of high salt concentrations on key enzyme activities was investigated in crude cell extracts. Activities greater than 60% of the maximal activity of the following key catabolic enzymes occurred at the following [NaCl] ranges: glyceraldehyde-3-phosphate dehydrogenase, 1 to 2 M; alcohol dehydrogenase (NAD linked), 2 to 4 M; pyruvate dehydrogenase, 0.5 to 1 M; and hydrogenase (methyl viologen linked), 0.5 to 3 M. These studies support the hypothesis that obligately halophilic, anaerobic eubacteria adapt to extreme salt concentrations differently than do halophilic, aerobic eubacteria, because they do not produce osmoregulants or exclude Cl-. This study also demonstrated that these halophilic, anaerobic eubacteria have a physiological similarity to archaebacterial halophiles, since Na+ and Cl- are present in high concentrations and are required for enzymatic activity.  相似文献   

4.
In an effort to assess the effects of dehydration on the content of water and electrolytes (Na+, K+, Cl-, and Mg2+) in plasma and muscle tissue, eight men exercised in the heat (39.5 degrees C, 25%). Blood urine, and muscle biopsy samples were obtained before exercise and after the subjects had reduced their body weight by 2.2, 4.1, and 5.8%. On the average, plasma and muscle water (H2Om) contents were found to decline 2.4 and 1.2% for each percent decrease in body weight. Muscle sodium (Na+m) and chloride (Cl-m) content remained unchanged with dehydration, while muscle magnesium (Mg2+m) declined 12% as a result of the 5.8% dehydration. In terms of intracellular concentrations, K+i increased 7.2 and 10.6% at the 2.2 and 4.1% dehydration levels, respectively. Calculations of the resting membrane potential suggest that the water and electrolyte losses observed in these studies do not significantly alter the excitability of the muscle cell membrane.  相似文献   

5.
The relationship between the resting membrane potential and the intracellular ionic concentrations in human monocytes was investigated. Cell volume, cell water content, and amount of intracellular K+, Na+, and Cl- were measured to determine the intracellular concentrations of K+ (Ki), Na+ (Nai) and Cl- (Cli) of monocytes, and of lymphocytes and neutrophils. Values found for monocytes were similar to those for neutrophils, i.e., cell volumes were 346 and 345 micron3, respectively, cell water content 78%, and Ki, 128 and 125, Nai, 24 and 26, and Cli, 102 and 103 mmol/l cell water, respectively. Lymphocytes, however, had different values: 181 micron3 cell volume, 77% cell water content, and for Ki, Nai, and Cli, 165, 37, and 91 mmol/l cell water, respectively. The resting membrane potential of cultured human monocytes (range -30 to -40 mV), determined by measurement of the peak potential occurring within the first milliseconds after microelectrode entry, was most dependent on extracellular K+, followed by Cl-, and Na+. The membrane permeability ratio of Cl- to K+ was estimated by use of the constant field equation to be 0.23 (range 0.22 to 0.30).  相似文献   

6.
The Ehrlich ascites tumor cell has been used as a model of an unspecialized mammalian cell, in an attempt to disclose the mechanisms involved in the regulation of cellular water and salt content. In hypotonic medium Ehrlich cells initially swell as nearly perfect osmometers, but subsequently recover their volume within about 10 min with an associated net loss of KCl, amino acids, taurine and cell water. The net loss of KCl takes place mainly via separate, conductive K+ and Cl- transport pathways, and the net loss of taurine through a passive leak pathway. Ca2+ and calmodulin appear to be involved in the activation of the K+ and Cl- channels, as well as the taurine leak pathway. In hypertonic medium Ehrlich cells initially shrink as osmometers, but subsequently recover their volume with an associated net uptake of KCl and water. In this case, the net uptake of KCl is the result of the activation of an electroneutral, Na+- and Cl- -dependent cotransport system with subsequent replacement of cellular Na+ by extracellular K+ via the Na+/K+ pump. In the present review we describe the ion and taurine transporting systems which have been identified in the plasma membrane of the Ehrlich ascites tumor cell. We have emphasized the selectivity of these transport pathways and their activation mechanisms. Finally, we propose a model for the activation of the conductive K+ and Cl- transport pathways in Ehrlich cells which includes Ca2+, leukotrienes, and inositol phosphate as intracellular second messengers.  相似文献   

7.
We have investigated the mechanism by which the replacement of a Na(+)-rich medium by a K(+)-rich medium causes an increase in the apparent affinity of glucokinase (hexokinase IV or D) for glucose in isolated hepatocytes [Bontemps, F., Hue, L. & Hers, H. G. (1978) Biochem. J. 174, 603-611]. The stimulatory effect of a K(+)-rich medium on the rate of glucose phosphorylation, as assessed by the release of tritium from [2-3H]glucose, was only partially additive with the effect of fructose, suggesting that it was also due to a decrease in the inhibition exerted on glucokinase by its regulatory protein. Measurements of metabolites indicated that the effect of the K(+)-rich medium was neither due to the formation of fructose 1-phosphate, nor to changes in the concentrations of fructose 6-phosphate or Pi, two other effectors of the regulatory protein. Replacement of Na+ by K+ in the medium resulted in a time-dependent and dose-dependent increase in cell volume that paralleled the changes in the rate of detritiation observed at 5 mM glucose. The water and chloride contents, estimated using radiolabelled compounds, were threefold and tenfold higher, respectively, in K+ cells than in Na+ cells, and the intracellular Cl- concentration about threefold higher (94 versus 29 meq/l). The effects of the K(+)-rich medium on cell volume, Cl- concentration and rate of detritiation were greatly reduced by including 80 mM trehalose or sucrose in the medium at the start of the incubation. Addition of trehalose to cells incubated for 45-50 min in the K(+)-rich medium caused an immediate decrease in cell volume whereas the rate of detritiation and the Cl- concentration underwent a transient increase followed by a decrease. Replacement of KCl by KBr, potassium acetate or potassium trichloroacetate in the K(+)-rich medium resulted in different relationships between cell volume and the rate of detritiation, in agreement with the differential effect of these salts on the activity of purified glucokinase assayed in the presence of regulatory protein. From these results we conclude that the increase in the activity of glucokinase induced by a KCl-rich medium is at least partly due to an increase in the concentration of Cl-, which relieves the inhibition exerted by the regulatory protein on purified glucokinase.  相似文献   

8.
Isolated small intestinal epithelial cells, after incubation at 4 degrees C for 30 min, reach ion concentrations (36 mM K+, 113 mM Na+ and 110 mM Cl-) very similar to those of the incubation medium. Upon rewarming to 37 degrees C, cells are able to extrude Na+, Cl- and water and to gain K+. Na+ extrusion is performed by two active mechanisms. The first mechanism, transporting Na+ by exchanging it for K+, is inhibited by ouabain and is insensitive to ethacrynic acid. It is the classical Na+ pump. The second mechanism transports Na+ with Cl- and water, is insensitive to ouabain but is inhibited by ethacrynic acid. Both mechanisms are inhibited by dinitrophenol and anoxia. The second Na+ extruding mechanism could be the Na+/K+/2Cl- cotransport system. However, this possibility can be ruled out because the force driving cotransport would work inwards, and because Na+ extrusion with water loss continues after substitution of Cl- by NO3-. We propose that enterocytes have a second Na+ pump, similar to that proposed in proximal tubular cells.  相似文献   

9.
The resting membrane potential of the cultured fibroblasts derived from rabbit subcutaneous tissues was -10.2 +/- 0.20 mV (n = 390). This potential was affected by the potassium concentration in the culture medium, but not by other chemical or hormonal preparations, such as dibutyryladenosine 3',5'-cyclic monophosphate (0.5 to 5.0 mmol/l), sodium fluoride (10(-5) to 10(-4) M), hydrocortisone (10(-7) to 10(-6) M), parathyroid extract (0.5 to 1.0 U/ml), or thyrotrophin (5 to 10 mU/ml). The Na+, K+, and Cl- concentrations of the cultured fibroblasts were 35.4, 85.7, and 22.6 mmol/l cell water, respectively. The water and protein contents of these cells were 82.1 and 9.18 g/100-g cells, respectively. The intracellular pH of fibroblasts as determined by [14C] dimethyloxazolidine-2, 4-dione, and 3H2O ranged between 6.9 and 7.1 when the pH of the culture medium was maintained at 7.4. The activities of Na+, K+-, HCO3(-)-, and Ca++, Mg++-ATPases in these cultured cells were 19.0 +/- 2.1, 13.6 +/- 2.1, and 6.6 +/- 1.2 nmol pi/mg protein per minute, respectively, and the carbonic anhydrase activity was 0.054 U/mg protein. Calculations based on the values for the membrane potential and the electrolyte concentrations observed in this study indicate that Na+, K+, Cl-, and H+ are not distributed according to their electrochemical gradients across the cell membrane. Na+, Cl-, and H+ are actively transported out of the cells and K+ into the cells.  相似文献   

10.
A Na+/K+/Cl- cotransport pathway has been examined in the HT29 human colonic adenocarcinoma cell line using 86Rb as the K congener. Ouabain-resistant bumetanide-sensitive (OR-BS) K+ influx in attached HT29 cells was 17.9 +/- 0.9 nmol/min per mg protein at 25 degrees C. The identity of this pathway as a Na+/K+/Cl- cotransporter has been deduced from the following findings: (a) OR-BS K+ influx ceased if the external Cl- (Cl-o) was replaced by NO3- or the external Na+ (Na+o) by choline; (b) neither OR-BS 24Na+ nor 36Cl- influx was detectable in the absence of external K+ (K+o); and (c) concomitant measurements of 86Rb+, 22Na+, and 36Cl- influx indicated that the stoichiometry of the cotransport system approached a ratio of 1N+:1K+:2Cl-. In addition, OR-BS K+ influx was exquisitely sensitive to cellular ATP levels. Depletion of the normal ATP content of 35-40 nmol/mg protein to 10-15 nmol/mg protein, a concentration at which the ouabain-sensitive K+ influx was unaffected, completely abolished K+ cotransport. OR-BS K+ influx was slightly reduced by the divalent cations Ca2+, Ba2+, Mg2+ and Mn2+. Although changes in cell volume, whether shrinking or swelling, did not influence OR-BS K+ influx, ouabain-sensitive K+ influx was activated by cell swelling. As in T84 cells, we found that the OR-BS K+ influx in HT29 cells was stimulated by exogenous cyclic AMP analogues and by augmented cyclic AMP content in response to vasoactive intestinal peptide, forskolin, norepinephrine and forskolin or prostaglandin E1.  相似文献   

11.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

12.
1. The responses of primary monolayer astrocyte cultures prepared from neonatal rat brains to hyper- and hypotonic media and to the addition of L-glutamic acid were examined as part of a systematic approach to use these cultures to obtain information on the mechanisms of the volume changes seen in astroglial cells in situ. 2. Addition of 200 mM mannitol to the medium to make it hypertonic caused cell shrinkage as measured with [14C]3-O-methyl-D-glucose, and also activated K+ and Cl- uptake measured with 86Rb+ and 36Cl- respectively. The increased ion uptake was completely inhibited by 0.1 mM bumetanide, showing that the Na+ + K+ + 2 Cl- co-transport system was being activated by cell shrinkage. 3. Studies of 86Rb+ uptake as a function of external K+ and hypertonic media showed a complex pattern. Increased bumetanide-sensitive, hypertonic-stimulated uptake of 86Rb+ was seen up to 20 mM K+0, with maximum stimulation being first reached at around 2 to 5 mM K+. At concentrations greater than 20 mM K+0 there was a further increase in bumetanide-sensitive 86Rb+ uptake, but there was no stimulation of this uptake by hypertonicity. There were also increases in bumetanide-insensitive 86Rb+ fluxes at [K+]0 higher than 20 mM that may have been due to opening of voltage-dependent K+ channels; this increased 86Rb+ flux was decreased in hypertonic medium. 4. When primary astrocyte cultures were swollen in hypotonic medium there was a rapid increase in volume as measured with [14C] 3-O-methyl-D-glucose, which then decreased in the continued presence of hypotonic medium. Thus, these cells exhibit volume regulatory decrease or RVD, as described for other cells. The possible ionic bases of this phenomenon have not yet been fully examined but the initial RVD did not appear to stimulate a furosemide-sensitive cotransport system. 5. Glutamate has been implicated as a possible endogenous effector of volume change in astrocytes. In the presence of ouabain, L-glutamate led to swelling of cultured astrocytes and increased uptake of 22Na+ and 36Cl-. It is suggested that this is due to uptake of L-glutamate with cotransport of Na+ and Cl-. Increased uptake was also seen for 86Rb+ in the absence of ouabain, and this was not seen in the absence of Na+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Na+, K+ and Cl- concentrations (cij) and activities (aij), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25 degrees C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl- and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl- concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aiCl with solid-state Cl-selective silver microelectrodes and aiNa and aiK with Na+ and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was -34mV. ciNa, ciK and ciCl were 51, 105 and 52 mM. The corresponding values for aiNa, aiK and aiCl were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is 'bound' or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl-. aiCl significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl- is implicated in intracellular Cl- accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl- electrochemical potential differences (deltamuNa and deltamuCl). deltamuNa (-7000 J . mol-1; cell minus mucosal medium) was energetically more than sufficient to account for deltamuCl (1000--2000 J . mol-1).  相似文献   

14.
T Günther  J Vormann 《FEBS letters》1989,250(2):633-637
Net Mg2+ efflux from Mg2+-loaded, human, rat and chicken erythrocytes was measured in sucrose, NaCl and choline Cl medium. Thus, Na+-dependent (NaCl minus choline Cl) and Na+-independent Mg2+ efflux (in sucrose) were determined. Na+-dependent Mg2+ efflux amounted to 0.16, 8.9 and 1.57 mmol/l cells x 30 min, Na+-independent Mg2+ efflux amounted to 0.89, 1.55 and 0.37 mmol/l cells x 30 min for human, rat and chicken erythrocytes. Na+-dependent Mg2+ efflux was inhibited by quinidine. Na+-independent Mg2+ efflux was inhibited by SITS and Cl-. A small fraction of Na+-independent Mg2+ efflux (in choline Cl) was resistant to SITS and Cl-. Ca2+ loading increased Mg2+ efflux similar to K+ efflux (Gardos effect). This effect was differently expressed in human and chicken erythrocytes.  相似文献   

15.
The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl- ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl- in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl-, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.  相似文献   

16.
This study examines the effect of heat-induced cytoskeleton transitions and phosphoprotein phosphatase inhibitors on the activity of shrinkage-induced Na+, K+, 2Cl- cotransport and Na+/H+ exchange in rat erythrocytes and swelling-induced K+, Cl- cotransport in human and rat blood cells. Preincubation of human and rat erythrocytes at 49 degrees C drastically activated K+, Cl- cotransport and completely (rat) or partly (human) abolished its volume-dependent regulation. The same procedure did not affect basal activity of Na+, K+, 2Cl- cotransport but completely abolished its activation by shrinkage thus suggesting the involvement of a thermosensitive element of cytoskeleton network in the volume-dependent regulation of cotransporters. Both the shrinkage- and electrochemical proton gradient-induced Na+/H+ exchange was inhibited by the heat treatment to the same extent (50-70%), thus indicating the different signaling pathways involved in the activation of Na+, K+, 2Cl- cotransport and Na+/H+ exchange by cell shrinkage. This suggestion is in accordance with data on the different kinetics of volume-dependent activation and inactivation of these carriers as well as on their sensitivity to medium osmolality. Both swelling- and heat-induced increments of K+, Cl- cotransport activity were diminished by inhibitors of phosphoprotein phosphatases (okadaic acid and calyculin). In rat erythrocytes these compounds potentiate shrinkage-induced Na+/H+ exchange. On the contrary, neither basal nor shrinkage-induced Na+, K+, 2Cl- cotransport was affected by these compounds. Our results indicate a key role of cytoskeleton network in volume-dependent activation of K+, Cl- and Na+, K+, 2Cl- cotransport and the involvement of protein phosphorylation-dephosphorylation cycle in regulation of the activity of K+, Cl- cotransport and Na+/H+ exchange.  相似文献   

17.
The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl-, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (KM for K+o = 3.5 mM; Jmax = 30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl--dependent (Na+ + K+) cotransport system (KM for K+o = 6.8 mM; Jmax = 20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+:1Na+:2Cl-, the exchange of K+i for K+o. The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

18.
Volume-regulating behavior of human platelets   总被引:3,自引:0,他引:3  
Human platelets exposed to hypotonic media undergo an initial swelling followed by shrinking (regulatory volume decrease [RVD]). If the RVD is blocked, the degree of swelling is in accord with osmotic behavior. The cells could swell at least threefold without significant lysis. Two methods were used to follow the volume changes, electronic sizing and turbidimetry. Changes in shape produced only limited contribution to the measurements. The RVD was very rapid, essentially complete in 2 to 8 minutes, with a rate proportional to the degree of initial cell swelling. RVD involved a loss of KCl via volume-activated conductive permeability pathways for K+ and anions, presumably Cl-. In media containing greater than 50 mM KCl, the shrinking was inhibited and with higher concentrations was reversed (secondary swelling), suggesting that it is driven by the net gradient of K+ plus Cl-. The K+ pathway was specific for Rb+ and K+ compared to Li+ and Na+. The Cl- pathway accepted NO-3 and SCN- but not citrate or SO4(2-). In isotonic medium, the permeability of platelets to Cl- appeared to be low compared to that of K+. After hypotonic swelling both permeabilities were increased, but the Cl- permeability exceeded that of K+. The Cl- conductive pathway remained open as long as the cells were swollen. RVD was incomplete unless amiloride, an inhibitor of Na+/H+ exchange, was present or unless Na+ was replaced by an impermeant cation. In addition, acidification of the cytoplasm occurred upon cell swelling. This reduction in pHi appeared to activate Na+/H+ exchange, with a resultant uptake of Na+ and reduction in the rate and amount of shrinking. Like other cells, platelets responded to hypertonic shrinking with activation of Na+/H+ exchange, but regulatory volume increase was not detectable.  相似文献   

19.
Over most of the range of salt concentrations in which the moderately halophilic bacterium Vibrio costicola could grow, the sum of the cell-associated Na+ + K+ ions was at least as high as in the external medium. This is in contrast to other moderate halophiles, which have substantially lower internal than external salt concentrations for most of their growth range. The relative amounts of Na+ and K+ in V. costicola varied with environmental conditions. The K+/Na+ ratio fell during anaerobic incubation or when cells were poisoned. As Na+ ions left the cells, K+ ions entered. However, movement of these ions was not tightly coupled, since K+ content of cells could increase without a corresponding decrease in Na+ content. The Mg2+ contents of cells varied little with environmental conditions.  相似文献   

20.
Ionic milieu and volume adjustments in detergent-extracted thymic nuclei   总被引:1,自引:0,他引:1  
Detergent-extracted isolated thymic lymphocyte nuclei were incubated in buffers containing 3 mM Ca++ and Mg++ and varying concentrations of Na+ and K+. Nuclei in 15 mM K+, 15 mM Na+ had a smaller size, smaller interchromatin spaces, and less packed chromatin than nuclei in the absence of these ions, but their water content relative to dry mass was not significantly different. NMR relaxation properties of water protons in these different nuclei were different, and nuclei in 15 mM K+, 15 mM Na+ contained twice as much K and Na as in the buffer solution. These findings indicate that the hydration of chromatin bodies and the size of the interchromatin spaces are sensitive to the free monovalent ion concentrations. When isolated nuclei were exposed to solutions containing 150 mM total concentration of K + Na, the nucleoplasm became disrupted and the hydration index was greater. The results are discussed in regard to possible mechanisms of nuclear volume control in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号